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Abstract. Process model matching provides the basis for many process
analysis techniques such as inconsistency detection and process querying.
The matching task refers to the automatic identification of correspon-
dences between activities in two process models. Numerous techniques
have been developed for this purpose, all share a focus on process-level
information. In this paper we introduce instance-based process match-
ing, which specifically focuses on information related to instances of a
process. In particular, we introduce six similarity metrics that each use
a different type of instance information stored in the event logs associ-
ated with processes. The proposed metrics can be used as standalone
matching techniques or to complement existing process model matching
techniques. A quantitative evaluation on real-world data demonstrates
that the use of information from event logs is essential in identifying a
considerable amount of correspondences.
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1 Introduction and Motivation

Process models have been established as a means to design, analyze, and improve
information systems [7]. The creation, utilization, and evolution of such models
is supported by a manifold of concepts and techniques that offer, for instance,
re-use driven modeling support, harmonization of model variants, model-based
system validation, and effective management of model repositories. Many of these
techniques share a reliance on the identification of correspondences between en-
tities of different models, also termed process model matching [13]. The accuracy
and, therefore, usefulness of techniques supporting the creation, utilization, and
evolution of models is highly dependent on the correctness and completeness of
the process model matching outcome.
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In recent years, a plethora of works have addressed process model match-
ing [1,3]. Growing alongside related fields such as ontology alignment and schema
matching [15], process model matching offers innovation through the use of
process-oriented information in the matching task. Existing process model match-
ing techniques focus mainly on process information described by process models
themselves. In this work we present the first matching technique that uses an
important additional resource: event logs. Such logs offer valuable information
on attributes, event durations, and other aspects that specifically relate to the
observed execution of processes, rather than their specification. We propose and
evaluate six new matching techniques that use event-log information and eval-
uate their contribution to the effective matching of processes. These techniques
aim to identify correspondences that cannot be identified by just considering
process model information.
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Fig. 1. Two process models and their correspondences

To illustrate the usefulness of event-log information for process model match-
ing, consider two process models, M1 and M2, which depict two (simplified)
processes to handle loan applications. Also consider their respective sets of ac-
tivitiesA1 andA2. Figure 1 illustrates these models, M1 at the top and M2 at the
bottom, and highlights their correspondences, i.e. the activities that represent
similar behavior.

In process model matching, we wish to automatically identify these corre-
spondences between A1 and A2. By analyzing the labels of the activity, some
correspondences can be identified in a straightforward manner, such as the cor-
respondence between receive loan application and receive application
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form. However, the label-based identification of other correspondences is not as
straightforward, if at all possible. Consider the assess loan application ac-
tivity in M1 and the activities check document completeness and evaluate

credit score from M2. For the correspondences between these activities, there
is no obvious syntactic or semantic relation for the contents of their labels. This
makes it difficult to recognize their similarity based on textual analysis. However,
the events associated with these activities provide valuable information about
their similarity. Event1 in M1 includes attributes that describe the completeness
of the filed documents and the credit score. Events Event3 and Event4 in M2

are each also associated with one of these attributes. This similarity between
event attributes provides a strong indication of relation between the activities,
which could not be derived without considering event information.

In other cases, the names of attributes that are associated with events, by
themselves, do not suffice to distinguish among potential correspondences. For
example, the decide on low-value loan (am) and decide on high-value

loan (an) activities from model M2 both have events that contain an amount

attribute. Therefore, the attribute names are not sufficient to determine which
of these corresponds to the perform advanced check activity (ao) in M1. How-
ever, by analyzing the values associated with these attributes throughout an
event log, this could be achieved. For instance, if events corresponding to an and
ao are always associated with amounts above e200.000, while am always has a
lower amount, the correspondence between an and ao can be asserted.

The main contribution of the paper is in the introduction of six conceptual
notions of similarity between event classes. These similarity notions cover differ-
ent aspects of process information stored in event logs, ranging from similarity
in execution times to data-based similarity. We also discuss operationalizations
of the similarity notions into similarity measures. In particular, we define one
specific similarity measure for each of the six notions and reflect on alternative
ways to operationalize them. We also offer a full-scale instance-based process
model matching tool, which builds on an existing tool for schema matching.

The remainder of the paper is organized as follows. Section 2 introduces
preliminary notions relevant to event logs and process model matching. Section 3
describes our proposed six similarity measures. The quantitative evaluation in
Section 4 considers the performance of these individual similarity measures for
matching, as well as their composition in matching ensembles. We discuss related
work in Section 5 and conclude the paper in Section 6.

2 Preliminaries

This section introduces notions relevant to the matching techniques we present
in this paper. In particular, we define event logs and process matching concepts.

An event log L comprises a set of traces, each representing an execution of a
single process instance. Each trace t = 〈e1, . . . , en〉 ∈ L consists of a sequence of
events. We use E to denote the finite set of event classes that occur in a log. An
occurrence of an event e ∈ t for any trace t ∈ L corresponds to a specific event
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class, i.e., e ∈ Ei for Ei ∈ E . For the purposes of this paper, we assume that
for a process model M with an activity set A each activity a ∈ A corresponds
to exactly one event class E ∈ E and vice versa. Therefore, without loss of
generality, we shall refer to activities and event classes interchangeably.

We formally define process model matching based upon notions from [11]. For
any pair of event class sets {E1, E2}, a matching task creates an n×n′ similarity
matrix M(E1, E2) over E1 × E2. Each Mi,j in the matrix represents a degree of
similarity, usually a real number in [0, 1], between the i-th event class in E1 and
the j-th event class in E2. The matching task often consists of sequential steps
in which different classes of matchers are applied. Here, it is important to dis-
tinguish between three classes of matchers: (i) first line matchers, (ii) ensemble
matchers, and (iii) decision makers. A first line matcher (1LM) establishes a
similarity matrix by directly analyzing sets of event classes, {E1, E2}. For any
pair of event classes E1 ∈ E1 and E2 ∈ E2, each 1LM produces a score [0, 1] that
quantifies the similarity between E1 and E2 by comparing the instances of these
classes according to a certain characteristic. Ensemble matchers and decision
makers are both specific types of so-called second line matchers (2LMs). A 2LM
establishes a similarity matrix from an input of one or more other similarity ma-
trices. Ensemble matchers are 2LMs that combine the results of multiple 1LMs
into a single similarity matrix, for example by computing a weighted average
of the similarity matrices. Lastly, decision makers take a non-binary similarity
matrix (with values in the range [0,1]), as created by a 1LM or an ensemble
matcher, and convert it into a binary matrix (with values in {0, 1}). For exam-
ple, if we know that each E1 ∈ E1 corresponds to at most one event class in
E2, a decision maker can be used to select the event class E2 with the highest
similarity scores for each E1. We refer to this selected pair as a correspondence
between E1 and E2.

3 Event-Class Similarity

This section describes how information contained in event logs can be utilized
to identify correspondences among event classes. We describe six conceptual no-
tions of similarity, which together provide a complete coverage of the prominent
types of information contained in event logs: ordering, frequencies, timestamps,
and data attributes. We consider one similarity notion for each of the first three
types and, due to its versatility, three different similarity notions related to the
data attributes associated with events. To illustrate the operationalization of
these similarity notions, we introduce a corresponding similarity measure for
each of them. Each measure produces a value in the range [0, 1], where a higher
score indicates a stronger similarity. These measures can be used as 1LMs, where
the similarity scores obtained by the measures are used to populate a similar-
ity matrix. The measures that we introduce can be applied without imposing
any assumptions on the data. Furthermore, we also reflect on alternative mea-
sures that typically depend on certain assumptions or are computationally more
complex.
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3.1 Positional Similarity

The underlying idea of positional similarity is that if two event classes occur at
similar stages in the execution of a process, they are more likely to be similar.
For example, the final event in M1, Send decision letter, is more likely to be
similar to Inform applicant, which occurs at the end of M2, than to Receive

application form, which occurs at the start of the process.

Similarity measure. We define a relative position (RP ) measure that quantifies
the average position at which events of a certain event class occur in traces. To
account for varying trace sizes, we consider the position of an event relative to
the length of a trace. Specifically, we use pe to denote the relative position of an
event e in a trace, e.g., for t = 〈a, b, c〉, pa = 1/3, pb = 2/3 and pc = 3/3. Using
p̄E to denote the average pe over all instances e ∈ E, Equation 1 provides the
RP measure.

RP (E1, E2) = 1− |p̄E1
− p̄E2

| (1)

Alternatives. Comparing the position of events in traces provides a basic mea-
sure for structural or behavioral similarity. Techniques for process model match-
ing exist that use more advanced similarity measures, for example those base on
graph edit distance or behavioral relations [4]. Such measures can also be adapted
to work on graph structures or behavioral relations derived from event-log infor-
mation. Such derivation is done by techniques that automatically derive process
models from event logs, i.e. so-called process discovery techniques.

3.2 Occurrence Similarity

The frequency with which events of a certain event class occur can provide useful
information regarding its similarity to other event classes. For example, if two
event classes E1 and E2 each occur only rarely in an event log, then E1 and E2

both correspond to some exceptional action, hinting at their potential similarity.
In the running example, for instance, it can be expected that the majority of loan
requests will be for amounts below e200,000. This means that occurrences of
the perform advanced check and decide on high-value loan are relatively
rare. Therefore, comparing the frequencies with which event classes occur can be
a useful similarity indicator. Furthermore, the consideration of frequencies can
also be used to identify a lack of similarity, for instance between event classes
that occur only once per trace and those that occur multiple times.

Similarity measure. We define a measure FREQ which compares the average
number of occurrences of event classes per trace. We let f̄E denote this average
for an event class E, and use Equation 2 to formalize FREQ. Because it is
possible that f̄E > 1, this measure is normalized to ensure a confidence score in
[0, 1].

FREQ(E1, E2) = 1− |
|f̄E1

− f̄E2|

max(f̄E1
, f̄E2

)
| (2)
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Alternatives. An alternative way to evaluate occurrence similarity is to con-
sider the fraction of traces in which an event class occurs, rather than the average
number of occurrences per trace. Furthermore, it is possible to perform statistical
tests rather than compare averages. We reflect on these tests in Section 3.3.

3.3 Duration Similarity

The time it takes to execute activities can serve as an indicator that provides
useful hints regarding their similarity. In our running example it can be expected
that activities that check loans with amounts over e200,000 are extensive and,
therefore, consume a significant amount of time. By contrast, the communication
of the decision to the applicant can very well be automated, resulting in negligi-
ble durations. Such a considerable difference in durations can be an important
indicator for dissimilarity.

Similarity measure. A straightforward similarity measure for durations can
be obtained by comparing the average durations of an event class in a log. Using
d̄E to denote the average duration of events of class E, Equation 3 provides a
normalized measure that returns a score in [0, 1].

DUR(E1, E2) = 1− |
|d̄E1

− d̄E2|

max(d̄E1
, d̄E2

)
| (3)

Alternatives. Durations can vary significantly among occurrences of the same
event class. An alternative is to use statistical tests, e.g., the t-test or Kolmogorov-
Smirnov test [16] to compare the statistical distribution of the durations for two
event classes. To apply a statistical test certain preconditions have to be met.
For example, the t-test requires data to be normally distributed. Another consid-
eration to take into account is the cost of computing the similarity. For instance,
the Kolmogorov-Smirnov test is computationally intensive, which can negatively
affect its applicability to matching problems.

3.4 Attribute name similarity

The names of attributes provide insights into the data values used or created
by events. These attribute names can be useful similarity indicators to identify
correspondences. Their importance is demonstrated in the motivational scenario,
where event classes that produce the same attributes (e.g. the docsComplete

attribute) are recognized to be similar to each other.

Similarity measure. We define an attribute name similarity measure ATTR,
which determines the level of overlap in attribute names among the attribute sets
associated with two event classes. To quantify this overlap, we adapt the well-
known inverse document frequency (idf) and cosine similarity measures from the
field of information retrieval [18]. The idf assigns weights to the occurrence of
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attribute names based on how common they are in a particular context, i.e. in a
process. The underlying idea is that unique attributes, such as docsComplete in
the motivational scenario, provide better indicators of similarity than common
attributes. To compute the cosine similarity measure, we convert the attribute
sets of event classes into weighted vector-based representations, denoted as AE.
The weights in these vectors reflect the idf-score associated with a given at-
tribute.

ATTR(E1, E2) =
AE1 ·AE2

‖ AE1 ‖‖ AE2 ‖
(4)

Alternatives. The ATTR measure only considers overlap in attributes with
identical names. Numerous techniques exist that can be used to also quantify
the similarity between non-identical attribute names [10]. Commonly applied
measures include the Levenshtein distance [22] for syntactic similarity, which can
be used to compute the string edit distance between attribute names. Semantic
similarity measures can be used to recognize names with similar meanings, for
instance those that use synonymous terms. The most commonly used tool to
quantify semantic similarity is WordNet [2].

3.5 Attribute Value Similarity

The values of an attribute, associated with events of a given event class may
provide insights into similarity beyond attribute name similarity. We have iden-
tified two general scenarios for this. First, an analysis of values can be useful to
determine similarity in the context of opaque or unrelated attribute names. For
instance, it is difficult to relate two attributes month and m based on their labels.
By contrast, if both attributes are associated with numeric values in the range
1–12 (or even month names), their similarity becomes more apparent. Second,
attribute value similarity can be used to disambiguate event classes that use
the same attributes. The motivational scenario provides an example of this. The
event classes decide on high-value loan and decide on low-value loan in
M2 both consider an amount attribute. Events of the former class are associated
with a higher range of values than events of the latter. Therefore, by considering
the attribute values, we can identify that the former event class is more likely
to correspond to perform advanced check in M1, which similarly occurs only
for loan requests with a high amount.

Similarity measure. To quantify attribute value similarity for two individual
attributes, we rely on techniques from the research area of schema matching [8],
where content-based matching, (direct comparison of sets of attribute values) is
combined with constraint-based matching. The latter aims to extract constraints
from a set of values, such as upper and lower bounds for numerical values. For
brevity, we refrain from presenting explicitly the equations used in this method.
After considering the similarity of individual attributes, the similarity values
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obtained in this manner can be used as weights to calculate the cosine simi-
larity between two attribute sets. Using VAL(AE) to refer to the value sets of
the attributes of an event class E, we compute the VAL measure as given by
Equation 5.

V AL(E1, E2) =
VAL(AE1) ·VAL(AE2)

‖ VAL(AE1) ‖‖ VAL(AE2) ‖
(5)

Alternatives. Various alternative techniques exist to determine the similarity
between two individual attributes, including identifying and comparing data
types such as zip codes or geographical names, putting constraints on values,
and identifying data patterns and distributions (cf. [15]).

3.6 Prerequisites Similarity

The input data used by an event can be an important indicator of event class
similarity. Intuitively, this builds on the idea that the more similar the data that
is used by event classes, the more similar their purpose. For example, in the
motivational scenario, events of the classes send decision letter in M1 and
inform applicant in M2 are the only ones to occur after an event has produced
a value for the decision attribute. A challenge here is that the XES-standard1

for event logs does not have an explicit notion of input data. Therefore, an
event log can contain information on input data in two ways. First, input data
elements of an event e might be part of the attribute set of e, as seen for the
amount attribute of the perform advanced check event. In this case, similarity
of inputs is already covered by the aforementioned attribute name and value
similarity measures ATTR and V AL. However, input data can also be derived
from data attributes that were created prior to the execution of an event, which
we operationalize next.

Similarity measure. We define a measure PREQ that determines the similar-
ity of prerequisites based on the attributes associated with prior events. Specif-
ically, given an event ei that occurs at position i in a trace t, we define Pei as
the union of all attribute sets Aej for 0 < j < i. PE then denotes all attributes
contained in a set Pe for e ∈ E. The similarity between two prerequisites sets
PE1 and PE2 is then computed in a similar manner as the ATTR measure.

PREQ(E1, E2) =
PE1 ·PE2

‖ PE1 ‖‖ PE2 ‖
(6)

Alternatives. It is possible to consider the values of prerequisite attributes,
rather than their names, as provided by the V AL measure, or by combining the
two. Furthermore, alternative measures can consider two more factors in the sim-
ilarity computation, namely frequency and proximity of prerequisite attributes.

1 http://www.xes-standard.org/
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The frequency with which an attribute is created prior to the execution of an
event e ∈ E can be used to distinguish among mandatory and optional pre-
requisites. In the context of process matching, such a distinction was proposed
by Sagi et al. [17]. The proximity between the creation of an attribute and an
occurrence of an event can provide insights into their similarity. Intuitively, if
an attribute is created by an event at index i in a trace, then this attribute is
more likely to be a relevant prerequisite to its immediate sequel event ei+1 than
it is to events that are further away. Frequency and proximity considerations
can be integrated by adapting the weights of the elements of the vectors used
by PREQ accordingly.

4 Empirical Evaluation

This section presents an empirical evaluation that demonstrates the usefulness of
event-log information for process matching. We evaluate the performance of the
proposed event log-based matchers as a standalone tool. Specifically, we compare
the correspondences obtained by automatic matching based on our 1LMs to a
gold standard that contains the true correspondences between event classes. Our
evaluation is based on real-world data, using a test collection of 105 event log
pairs.

4.1 Test Collection

To perform the evaluation, we use data from the BPI Challenge 2015 [5], which
consists of real-world event data related to the handling of construction per-
mit applications by five Dutch municipalities. The event data describe similar
processes, while their actual implementation differs considerably. To obtain a
sufficiently large collection of event logs to match, we split the event data into
event logs, each relating to a different subprocess (on average 17 subprocesses per
municipality). After removing the logs that contain less than five event classes (to
avoid trivial matching tasks), we obtain a total of 57 event logs. We create pairs
of event logs that relate to the same subprocess from different municipalities.
This results in a total of 105 event log pairs.

Table 1. Characteristics of the test collection

Measure Traces Event classes Total corr. True corr. Log Overlap

Average 487.0 33.0 2,533.4 30.9 87.7%
Std.dev. 353.6 40.7 6,246.3 36.5 10.5%
Minimum 8 5 15 3 50.0%
Maximum 1409 172 26,832 156 100.0%

Table 1 provides an overview of the test collection. The table illustrates the
great diversity between the subprocesses. This can, for example, be seen in the
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number of event classes per log, which ranges from 5 to 172. The true corre-
spondences reflect the actual correspondences between event classes from a pair
of logs, also referred to as the gold standard. This gold standard directly fol-
lows from the traceability between the event classes in the logs of the different
municipalities. The last column in the table describes the overlap in terms of
the event classes of a log pair, i.e., the fraction of event classes that appear in
both logs. This measure indicates that, on average, 88% of the event classes in
a log also appear in the gold standard. In the most extreme case, only 50% of
the event classes from a log pair correspond to each other. Table 1 highlights
the fact that even though the processes are similar across the five municipali-
ties, considerable differences exist as well. The choice for this data collection is,
furthermore, motivated by the lack of event logs associated with the collections
typically used to evaluate matchers, i.e. the collections of the Process Model
Matching Contests [1,3].

Note that in order to provide objective evaluation results, we hide all refer-
ences to the names of event classes in this test collection. In particular, we hide
the names and values of the following attributes: concept:name, action code,
activityNameEN, and activityNameNL.

4.2 Setup

To conduct the evaluation, we used the Ontobuilder Research Environment
(ORE), an open source schema matching tool that enables researchers to run
and evaluate matching experiments. We implemented the six 1LMs (Section 3)
in ORE and made their implementation publicly available as part of the tool.2

As described in Section 2, establishing (exact) correspondences between the
event class sets E1, E2 of a log pair requires a similarity matrix M(E1, E2) and a
decision maker. Here, we obtain the similarity matrices in two different manners,
resulting in a two-part evaluation. In the first part, we use each of the six 1LMs
separately to construct M(E1, E2) based on a distinct similarity measure. This
part of the evaluation provides insights into the performance of the individual
1LMs and into the characteristics of the test collection. In the second part, we
use an ensemble matcher that combines the scores of the six similarity matrices
into a single matrix. By evaluating this matching ensemble, we obtain insights
into the combined performance of the matchers and their complementary nature.
We further reflect on the way in which the measures complement each other by
computing correlations among the individual similarity scores.

After obtaining a similarity matrix M(E1, E2) we apply a decision maker
on M(E1, E2) to obtain a set of exact correspondences, to which we will refer
to as C(E1, E2). In particular, we apply the maximum weighted bipartite graph
match (MWBM) [12] to establish C(E1, E2). This decision maker is particularly
well-suited in the context of the test collection, because it establishes 1:1 corre-
spondences between event classes.

2 https://bitbucket.org/tomers77/ontobuilder-research-environment
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We use the well-known precision, recall, and F1 measures to compare the
automatically obtained set of correspondences C to the set G of actual correspon-
dences included in the gold standard. Precision (pre) here reflects the fraction of
the correspondences obtained by the matching techniques that is also included
in the gold standard, whereas recall (rec) represents the fraction of the corre-
spondences in the gold standard that is correctly identified by the matchers. The
F1 measure represents the harmonic mean of precision and recall. Equations 7,
8, and 9 formally define these measures.

pre =
C ∩ G
C

(7) rec =
C ∩ G
G

(8) F1 =
2 ∗ pre ∗ rec
pre + rec

(9)

4.3 Results

Table 2 presents an overview of the results obtained by using the individual
1LMs and by a matching ensemble based on all six 1LMs. We will now elaborate
on the results obtained through these two methods.

Table 2. Overview of the evaluation results

FLM precision recall F1-score

RP .24 .25 .25
FREQ .14 .14 .14
DUR .13 .11 .12
ATTR .05 .04 .04
VAL .27 .27 .27
PREQ .09 .08 .08

Ensemble .38 .38 .38

Matching results. The results presented in Table 2 show that the performance
varies greatly among the various 1LMs. The lowest performance results belong
to ATTR and PREQ 1LMs, which both consider similarity based on attribute
names. These 1LMs achieve F1-score of .04 and .08, respectively. A post-hoc
analysis of the similarity matrices generated by these 1LMs shows that, indeed,
attribute names provide little discriminatory power in the context of this par-
ticular test collection. In fact, most event classes are associated with identical
or nearly identical sets of attributes, which results in a similarity score of 1.0
for the vast majority of event class pairs. By contrast, VAL achieves the highest
results with an F1-score of 0.27. This shows that, as opposed to the names of
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attributes, attribute values provide a substantially better indicator of similarity.
Furthermore, the performance of RP shows that the consideration of positional
similarity also provides a relatively good indicator of similarity.

The last row of Table 2 presents the results obtained by an ensemble consist-
ing of the six 1LMs. For this ensemble, we applied a näıve weighting scheme, in
which we computed the average score of the six similarity measures. The results
demonstrate that the ensemble greatly outperforms individual 1LMs, achieving
an F1-score of .38. A one-sided paired t-test reveals that this result is statis-
tically significant (p < 0.05) when compared to the best performing individual
1LM (VAL). The improved results of the ensemble illustrate that the six 1LMs
are complementary to each other and can enhance each other’s performance.

Top-k results. The results shown so far indicate that the use of log data for
process matching is a valid approach that can identify correspondences among
activities by analyzing execution data. It is also clear that the use of log data
alone does not suffice for achieving an industrial-strength matching tool. An F1-
score of about 0.4 indicates a far from random correlation between the decisions
made by the ensemble and the true correspondences. Still, it requires the support
of other techniques to strengthen its performance. Existing process model-based
matchers represent good candidates, because they use valuable process model
information (e.g., activity labels), which is purposefully not used by our log-
based matchers. Because numerous model-based matchers exist, each with their
own strengths and weaknesses, we leave for future research the best way to tackle
the combination of log-based and model-based matching techniques. Here, we
investigate the obtained results in more depth and determine to what extent the
log-based techniques lend themselves well to process matching.

Identified correspondences can be incorrect because often an event class has
multiple correspondences with equal or near equal similarity scores as the best
candidates. The selection of a single, best correspondence then becomes an arbi-
trary selection among a handful of correspondences. This problem relates to the
inherent issue of uncertainty in the matching task. Works on matching mono-
tonicity [9] have found that this uncertainty prevents matchers from identifying
a correct correspondence as the one with the highest similarity measure. How-
ever, these works argue that good matchers should contain the correct corre-
spondences among the correspondences with the highest similarity scores, i.e.,
in the so-called top-k matches. If they succeed in this, a good matcher positions
a true correspondence high enough for a human observer to confirm it after
scanning only a few possible correspondences. To test this, we check for each
event class whether its correct correspondence occurs within the top 3 or top 5
correspondences with the highest similarity scores.

Figure 2 presents results of the top-k analysis. For each matcher, we measure
the recall of top-1, top-3, and top-5. As expected, the matching result improves
significantly when the best correspondences are considered. This holds for all
matchers, but with varying levels of success. The biggest gain is observed for the
RP measure. There, the performance increases from a recall of 0.25 for top-1 to
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Fig. 2. Recall scores for top-k results

0.69 and 0.78 for top-3 and top-5, respectively. As such, the RP measure per-
forms nearly identically to the matching ensemble. The results indicate that all
matchers show a monotonic behavior, though some more than others. It is in-
teresting to see that while the top-1 performance of RP is worse than the one of
V AL, a different picture is drawn for top-3 and top-5. There, RP surpasses V AL
(in terms of Recall), performing just as well as the ensemble matcher. Finally,
what is important to realize is that by considering the top-3 and top-5 scores
users need to just evaluate approximately 4% and 7% of the total possible cor-
respondences. These small fractions already enable the respective identification
of close to 70% and 80% of the true correspondences.

5 Related Work

The work presented in this paper relates to two main streams of research, namely
process model matching and instance-based matching.

In the last few years, a plethora of process model matching approaches has
been proposed [1,3]. Traditionally, they combine structural or behavioral prop-
erties with different types of textual similarity. Some rely on rather simplis-
tic techniques such as the Levenshtein distance [20], others use WordNet for
computing textual similarity [14]. Recognizing the limitations of many existing
matchers in terms of performance, researchers recently started to explore alter-
native strategies. For instance, Klinkmüller et al. [13] improve matching results
by incorporating user feedback. Weidlich et al. [21] used prediction techniques
to select the most suitable matching technique for a given problem. In this work,
we propose a new resource, event log data, to improve the matching results. Our
experiments demonstrate that this indeed represents a promising direction.

Instance-based matching has been previously explored in the context of schema
matching and the related field of ontology alignment. Engmann and Maßmann [8]
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used two methods to enhance their COMA++ matcher. The first, a constraint-
based matcher, identifies the field types using a list of patterns and numerical
constraints attempted over the instance data per attribute. An approach similar
to our own VAL measure. Their second method applies to text-based fields taken
from the same domain in which the string-similarity of all instances is compared
and averaged. A similar approach is suggested by Wang et. al. [19] which probe
a Web query interfaces with keywords and then compare the vector-space sim-
ilarity of the query result tokens. A similar approach is applied by Duan et.
al. [6], using Locality Sensitive Hashing (LSH) techniques to compare instances
over very large ontologies. Zaiß et. al. [23] use regular expressions to improve
pattern identification of attribute domains. Our work differs from these works
in that we make use of process-unique features to perform the matching task.

6 Conclusion

In this work we proposed instance-based process matching as a new element for
the toolbox of matching process models. We introduced six 1LMs that assess
the similarity of two event classes from different event logs. Each 1LM focuses
on a different conceptual notion of similarity, resulting in a broad coverage of
the process information stored in event logs. We demonstrated the usefulness
of these similarity metrics through a quantitative evaluation using real-world
data. The evaluation showed that by just considering the information specific
to event logs, the introduced matchers can identify a considerable number of
correspondences between event classes.

In future work, we set out to provide and test further operationalizations of
the similarity concepts considered in this paper. Currently, we defined a single
similarity metric for each of the six concepts. However, the majority of these con-
cepts can be operationalized by implementing a variety of metrics, as discussed
in Section 3. Furthermore, we strive to combine our event log-based matching
techniques with traditional, model-based techniques for process model matching.
By combining model-based matchers with the proposed log-based matchers, we
will aim at achieving matching results that cannot be obtained by using either
of these techniques alone.
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