
Comparing and Aligning Process Representations

Han van der Aa

November 2017

SIKS Dissertation Series No. 2018-01
The research reported in this thesis has been carried out under the auspices of SIKS,
the Dutch Research School for Information and Knowledge Systems.

Promotiecommissie:
prof.dr. Frank van Harmelen (Vrije Universiteit Amsterdam)
prof.dr.ir. Wil van der Aalst (Eindhoven University of Technology)
prof.dr. Matthias Weidlich (Humboldt University of Berlin, Germany)
prof.dr. Barbara Weber (Technical University of Denmark, Denmark)
prof.dr. Manfred Reichert (University of Ulm, Germany)

ISBN 978-94-028-0867-4

Copyright©2018, Han van der Aa
All rights reserved unless otherwise stated.
Cover photo used under CC0 1.0 Creative Commons
Published by ProefschriftMaken || www.proefschriftmaken.nl
Typeset in LATEX by the author

VRIJE UNIVERSITEIT

Comparing and Aligning Process Representations

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. V. Subramaniam,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Bètawetenschappen
op vrijdag 26 januari 2018 om 11.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Johannes Hendrikus van der Aa

geboren te Sint-Oedenrode

promotor: prof.dr.ir. H.A. Reijers
copromotor: dr. H. Leopold

Abstract

Processes within organizations can be highly complex chains of inter-related steps,
involving numerous stakeholders and information systems. Due to this complexity,
having access to the right information is vital to the proper execution and effective
management of an organization’s business processes. A major challenge in this regard
is that information on a single process is often spread out over numerous models, doc-
uments, and systems. This phenomenon results from efforts to provide a variety of
process stakeholders with the information that is relevant to them, in a suitable format.
However, this disintegration of process information also has considerable disadvan-
tages for organizations. In particular, it can lead to severe maintenance issues, reduced
execution efficiency, and negative effects on the quality of process results. Against this
background, this doctoral thesis focuses on the spread of process information in orga-
nizations and, in particular, on the mitigation of the negative aspects associated with
this phenomenon. The main contributions of this thesis are five techniques that focus
on the alignment and comparison of process information from different informational
artifacts. Each of these techniques tackles a specific scenario involving multiple infor-
mational artifacts that contain process information in different representation formats.
Among others, we present automated techniques for the detection of inconsistencies
between process models and textual process descriptions, the alignment of process
performance measurements to process models, conformance-checking in the context
of uncertainty, and the matching of process models through the analysis of event-log
information. We demonstrate the efficacy and usefulness of these techniques through
quantitative evaluations involving data obtained from real-world settings. Altogether,
the presented work provides important contributions for the analysis, comparison, and
alignment of process information in various representation formats through the devel-
opment of novel concepts and techniques. The contributions, furthermore, provide a
means for organizations to improve the efficiency and quality of their processes.

i

Samenvatting

Bedrijfsprocessen kunnen heel ingewikkeld in elkaar zitten, omdat zij vaak bestaan uit
complexe ketens van onderling samenhangende stappen, waarbij bovendien een groot
aantal belanghebbenden betrokken is en ook nog allerlei IT systemen een rol spelen.
Door deze complexiteit is het voor de uitvoering en het onderhoud van bedrijfspro-
cessen van cruciaal belang dat bij elke stap de juiste informatie over deze processen
beschikbaar is. Een belangrijke complicatie in dit kader is dat informatie over een
enkel proces vaak verspreid is over tal van modellen, documenten en systemen. Deze
verspreiding ontstaat doordat organisaties trachten om de verschillende belanghebben-
den binnen een proces te voorzien van alleen die informatie die van specifiek belang is
voor hen. Deze opsplitsing van procesinformatie heeft voor een organisatie echter ook
aanzienlijke nadelen. Het kan namelijk leiden tot ernstige onderhoudsproblemen, ver-
mindering van efficiency en het kan een negatieve invloed hebben op de kwaliteit van de
uiteindelijke resultaten. Om bij te dragen aan een oplossing voor deze negatieve gevol-
gen, richt dit proefschrift zich op het verminderen van de problemen die voortkomen
uit de verspreiding van procesinformatie. De belangrijkste bijdragen in het proefschrift
zijn vijf technieken die zich focussen op het verbinden en vergelijken van procesinfor-
matie uit verschillende bronnen. Ieder van deze technieken biedt een oplossing voor
een specifiek scenario waarbij meerdere informatiebronnen in verschillende vormen
betrokken zijn. Zo presenteren we onder andere automatische technieken voor het op-
sporen van tegenstrijdigheden tussen procesmodellen en tekstuele documenten, voor
het controleren van de naleving van dubbelzinnige procesomschrijvingen en voor het
vergelijken van processen op basis van informatie uit IT systemen. We tonen het nut
en de bruikbaarheid van deze technieken aan door middel van kwantitatieve evaluaties
die zijn gebaseerd op gegevens van bestaande bedrijfsprocessen. Samengevat biedt dit
proefschrift een aantal wetenschappelijke bijdragen voor het analyseren, vergelijken
en verbinden van procesinformatie uit verschillende bronnen. Deze bijdragen worden
gevormd door de introductie van nieuwe theoretische concepten en de ontwikkeling
van technische oplossingen. Bovendien biedt dit werk een basis voor organisaties voor
het verbeteren van hun efficiëntie en de kwaliteit van hun processen.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Methodological Background . 6
1.4 Publications . 9
1.5 Thesis Outline . 11

2 Background 13
2.1 Process Information in Organizations 13
2.2 Core Definitions . 23
2.3 Natural Language Processing . 26
2.4 Matching . 35

3 Comparing Process Models to Textual Process Descriptions 45
3.1 Problem Illustration . 46
3.2 Inconsistency-Detection Approach 47
3.3 Evaluation . 56
3.4 Limitations . 63
3.5 Related Work . 64
3.6 Summary . 65

4 Conformance Checking based on Uncertain Event-Activity Mappings 67
4.1 Problem Illustration . 68
4.2 Conformance-Checking Technique 69
4.3 Evaluation . 73
4.4 Limitations . 76
4.5 Related Work . 77
4.6 Summary . 78

v

vi

5 Dealing with Ambiguity in Textual Process Descriptions 79
5.1 Problem Illustration . 80
5.2 Capturing Ambiguity Using Behavioral Spaces 81
5.3 Conformance Checking using Behavioral Spaces 90
5.4 Pruning Behavioral Spaces based on Information Gain 91
5.5 Evaluation . 93
5.6 Limitations . 100
5.7 Related Work . 101
5.8 Summary . 102

6 Transforming and Aligning Process Performance Indicators 103
6.1 Problem Illustration . 104
6.2 Template-Based PPI Definitions . 106
6.3 Transformation Approach . 111
6.4 Evaluation . 118
6.5 Limitations . 123
6.6 Related Work . 123
6.7 Summary . 124

7 Process Model Matching using Event-Log Information 125
7.1 Problem Illustration . 125
7.2 Event Log-Based Matching . 127
7.3 Evaluation . 132
7.4 Limitations . 137
7.5 Related Work . 138
7.6 Summary . 138

8 Conclusion 139
8.1 Summary of Results . 139
8.2 Implications . 141
8.3 Future Research . 144

Bibliography 147

SIKS Dissertation Series 165

Curriculum Vitae 177

List of Figures

2.1 Overview of a generic alignment task 14
2.2 Hierarchy between data, information, and knowledge 15
2.3 Main constructs in Task-Technology Fit theory 17
2.4 Loan application process with fragmented process information 19
2.5 Exemplary process model of a loan application process 24
2.6 Example of a parse tree. 30
2.7 Two process models and their correspondences 36

3.1 A textual and a model-based description of a bicycle manufacturing
process . 46

3.2 Overview of the proposed approach. 47
3.3 Simplified parse tree for sentence s8. 50
3.4 Correspondences disallowed by ordering constraints 52
3.5 Precision-recall graph for the detection of missing activities (activity

level) . 60
3.6 Precision-recall graph for the detection of model-text pairs with miss-

ing activities (process level) . 60

4.1 Process model for a simplified order handling process 68
4.2 Overview of the evaluation setup . 74
4.3 Evaluation results for deterministic conformance checking 75

5.1 Exemplary description of a claims handling process. 80
5.2 Steps involved to construct a behavioral space from a textual description 82
5.3 A behavioral space as a collection of m process interpretations 88
5.4 Visualization of three sets of conforming traces for cases with scope

ambiguity . 97

vii

viii LIST OF FIGURES

5.5 Comparison of uncertainty resolution using max. IG and random se-
lection . 99

6.1 Process model for an order handling process 104
6.2 Semantic concepts in a PPI definition 107
6.3 Overview of the proposed transformation approach 111
6.4 Fragment of a semantic prior P(Θ) 113

7.1 Two process models and their correspondences 126
7.2 Recall scores for top-k results . 136

List of Tables

1.1 Overview of the techniques presented in this thesis 3

2.1 Informational artifacts for a purchasing approval process 20
2.2 Activity identifiers for the process model depicted in Figure 2.5 24
2.3 Excerpt of an exemplary event log 25
2.4 Overview of the Penn Treebank tagset 28
2.5 Possible tags for an exemplary sentence, with correct tags in bold . . . 29
2.6 Exemplary Stanford dependencies 32
2.7 Comparison of syntactic and semantic similarity scores 40
2.8 Overview of semantic word relations 40

3.1 Main Stanford Dependencies used for anaphora resolution 49
3.2 Examplary similarity matrices with correspondences in bold 55
3.3 Fragment of the similarity matrix for the running example 56
3.4 Overview of the test collection . 57
3.5 Predictor performance evaluation results 61
3.6 Highest F1-measures for different configurations and predictors. . . . 62

5.1 Activities in the running example . 82
5.2 Exemplary outcomes of behavioral statement parsing 83
5.3 Parallel indicators used in [99] and their classification 86
5.4 Overview of the test collection . 94
5.5 Evaluation results . 96

6.1 PPIs for the order handling example 104
6.2 Example of a structured notation for PPI2 105
6.3 PPI templates and examples . 107
6.4 Domains associated with template slots 109

ix

x LIST OF TABLES

6.5 Tag set used for semantic annotation 112
6.6 Domain value resolution for PPI2 115
6.7 Overview of the test collection . 119
6.8 Evaluation results . 121

7.1 Characteristics of the test collection 133
7.2 Evaluation results . 135

Acronyms

BPM Business Process Management

BPMN Business Process Model and Notation

CFG Context-Free Grammar

EPC Event-driven Process Chain

FLM First-Line Matcher

IDF Inverse Document Frequency

IG Information Gain

IS Information Systems

IT Information Technology

LSH Locality Sensitive Hashing

HMM Hidden Markov Model

MWBM Maximum Weighted Bipartite-graph Match

NLP Natural Language Processing

ORE Ontobuilder Research Environment

PCFG Probabilistic Context-Free Grammar

PPI Process Performance Indicator

SCOR Supply Chain Operations Reference

SLM Second-Line Matcher

7PMG Seven Process Modeling Guidelines

TTF Task-Technology Fit

xi

1
Introduction

This chapter provides an introduction to this doctoral thesis. In Section 1.1, we moti-
vate the need for the alignment and comparison of process information in organizations.
Section 1.2 introduces the main contributions of our research. Section 1.3 describes
the methodological background for the research presented in this thesis. Section 1.4
presents the publications that followed from this research. Finally, Section 1.5 provides
an overview of the remaining chapters of the thesis.

1.1 Motivation
Business Process Management (BPM) is the art and science of analyzing how work is
performed in an organization with the aim to ensure consistent outcomes and to take
advantage of improvement opportunities [87]. The focal point of any BPM initiative
is formed by one or more business processes. A business process refers to a set of
related activities, which transform some input into an output that is valuable to a cus-
tomer [121]. Such processes exist in every organization, from hospitals to financial
institutions, and from family businesses to global enterprises.

Processes within organizations can be highly complex chains of inter-related steps,
involving numerous stakeholders and information systems [17]. Due to this complex-
ity, having access to the right information is vital to the proper execution and effective
management of an organization’s business processes [55]. Specifically, access to in-
formation on processes contributes to their efficient execution [139], their compliance
to rules and regulations [31], and to their enhancement and redesign [134]. A major
threat to this information need is that the information on a single process, also referred
to as process information, is often spread out over numerous models, documents, and
systems. We shall refer to this condition as the fragmentation of process information.

This fragmentation occurs because organizations typically use multiple informa-
tional artifacts to provide process information to stakeholders with different informa-
tional needs or preferences [55, 93]. However, the use of multiple informational ar-
tifacts also poses considerable challenges to organizations. First, the fragmentation

1

2 1.2. CONTRIBUTIONS

of process information can increase the effort required to access desired or necessary
information. In particular, users may have to browse through numerous systems and
documents to find the information they need [189, p.4]. Such cases can compromise
the efficiency and effectiveness of process execution and decision making [55]. Second,
fragmentation can result in the provision of incorrect process information to users. This
problem can occur when different artifacts contradict each other, for instance when the
artifacts have been developed independently [224]. The information captured in arti-
facts may also lose their validity over time if artifacts are not updated to reflect process
changes [280]. When users execute a process based on invalid information, they may
perform the process in an incorrect manner, resulting in business process noncompli-
ance [30]. Such noncompliant acts can have severe consequences for organizations,
including reduced productivity [35], a loss of control over processes [239], and even
financial penalties imposed by authorities [173].

Despite the severity of these issues, there is only limited support for organiza-
tions to effectively deal with the negative effects of the fragmentation of process in-
formation. This lack of support exists despite the widespread recognition in research
for the need to align process information from particular kinds of informational arti-
facts. In particular, a plethora of approaches have been developed that automatically
align information between process models, so-called process model matching tech-
niques (cf. [32, 58, 277]). Matching techniques also exist that address the need to align
information between different event logs [178], or between event logs and process mod-
els [37, 39]. There is also support for scenarios beyond the alignment of information.
For instance, several querying techniques exist that support users to search collections
of process models. Other approaches exist that determine the consistency between
process models [279] or that maintain consistency by propagating changes from one
model to another [280].

A key problem is that these aforementioned approaches only focus on specific ap-
plication scenarios. They typically address situations that involve highly-structured
process information in the form of process models and event logs. Process information
in less-structured formats, such as natural language documents, is largely ignored by
existing work. Consequently, there is a considerable gap between the way in which
organizations capture information on their processes and the support that exists for
this situation. As a result of this research gap, organizations still struggle with conse-
quences caused by the fragmentation of process information.

1.2 Contributions

This thesis focuses on the automated analysis of process information contained in vari-
ous representation formats. As a foundation, we provide insights into the way in which
organizations capture information on their processes and the problems that result from
this. The main contributions of this thesis revolve around the definition of five tech-
niques that focus on the comparison and alignment of process information in different
informational artifacts. The techniques that we develop enable organizations to execute
and maintain their process information more efficiently and to ensure that processes are
executed according to their specification.

CHAPTER 1. INTRODUCTION 3

Table 1.1: Overview of the techniques presented in this thesis

Purpose Illustration

1. Check consistency between a
process model and a textual pro-
cess description.

Process modelTextual process
description

Consistency check

2. Check conformance between
an event log and a process model
based on uncertain event-activity
mappings. Event log

Conformance check

Process model

3. Check conformance between
an event log and a textual process
description. Considers ambiguity
in the textual description. Textual process

description

Event log

Conformance check

4. Transform unstructured natural
language descriptions into mea-
surable Process Performance In-
dicators (PPIs). Process model PPI description

Alignment &
transformation

5. Align process models based
on information from associated
event logs.

Event log

Process model

Event log

Process model

Alignment

As depicted in Table 1.1, each technique addresses a specific scenario involving
multiple informational artifacts in different representation formats. With these tech-
niques we focus on three main types of representation formats: process models, event
logs, and natural language texts. The choice for these formats is justified by their role
as de facto standards to capture a wide range of process information. Specifically, pro-
cess models represent the most common means to capture design-time information on
the flow of business processes in a structured manner [87, p.16]. Furthermore, event
logs are the default way to capture run-time information on processes, as recorded dur-
ing their actual execution [13, p.8]. Finally, natural language texts are widely-used as
an all-purpose format to capture a broad variety of unstructured or semi-structured pro-
cess information, such as process descriptions, work instructions, and guidelines [190],
but also information on other process perspectives, such as Process Performance Indi-

4 1.2. CONTRIBUTIONS

cators (PPIs) [236].
The five techniques presented in this thesis provide a near-complete coverage of

the combinations of the three considered representation formats. Specifically, we fo-
cus on scenarios involving alignments from model-to-model, log-to-log, model-to-text,
log-to-model, and log-to-text1. Note that, given the lack of established application sce-
narios, we do not cover a scenario involving the comparison of process information
from two natural language texts. Within the combinations covered by the techniques,
our choice for the specific use cases is motivated by their practical relevance and by the
gap that exists between prior research and the novelty of the conceptual developments
required to address them. For example, the alignment between an event log and pro-
cess model primarily focuses on conformance checking (cf. [15, 24, 282]), whereas in
model-to-model scenarios the focus is most often on the establishment of alignments,
so-called matching (cf. [79, 277, 284]).

The insights about the use of process information in organizations and the presented
alignment techniques lead to several scientific contributions for the analysis, compari-
son, and alignment of process information, especially in the context of semi-structured
representation formats. We identify one contribution that stems from the insights ob-
tained about the fragmentation of process information, whereas five other contributions
follow from the alignment techniques. Specifically, the six main contributions of this
thesis are as follows:

1. An overview of the causes and consequences of process-information fragmenta-
tion. Organizations maintain a variety of process-information artifacts in order
to provide different process stakeholders with the information they require. This
fragmentation can have clear advantages, but also poses considerable threats to
the efficient maintenance and execution of processes. As part of Chapter 2, we
provide insights into the reasons why multiple artifacts are required for a single
process and which effects this can have on organizations. These insights can
be highly useful for organizations in their efforts to mitigate the negative conse-
quences associated with the fragmentation of process information. Furthermore,
they provide important guidance to researchers to develop means that support
organizations.

2. Inconsistency detection between process models and textual process descrip-
tions. Many organizations maintain textual process descriptions alongside graph-
ical process models. Although this makes process information accessible to var-
ious stakeholders, there is a clear risk that model and text become misaligned
when changes are not applied to both descriptions consistently. For organizations
with hundreds of different processes, the effort required to manually identify and
clear up such conflicts is considerable. We address this problem in Chapter 3
with a technique that automatically identifies inconsistencies between a process
model and a corresponding textual description. The techniques builds on ap-
proaches for linguistic analysis that are tailored to extract relevant process in-
formation from textual descriptions. Furthermore, our technique uses specific
metrics, so-called predictors, to quantify the likelihood that the two representa-
tion formats contain inconsistencies.

1Note that the fifth technique in the table covers both model-to-model and log-to-log alignment.

CHAPTER 1. INTRODUCTION 5

3. Behavioral spaces as a means to capture behavioral uncertainty in processes.
The use of semi-structured and unstructured representation formats for process
information, such as natural language texts, is widespread throughout organi-
zations. Nevertheless, these formats are typically exempt from consideration
by automated analysis techniques. A main reason for this is that these formats
depend on the use of natural language to convey the behavior of a process. Be-
cause natural language is inherently ambiguous, it is often impossible to deter-
mine with certainty which process behavior is exactly described. Rather, there
are numerous potential interpretations of the described process behavior. In or-
der to be able to reason about properties such as conformance in the context of
uncertain behavior, we introduce the concept of a behavioral space as a means
to capture all potential interpretations of behavioral uncertainty. In this thesis,
we leverage this concept in two ways. In Chapter 4, we use behavioral spaces
to capture behavioral uncertainty caused by unclear relations between different
informational artifacts. In Chapter 5, we use the concept to capture uncertainty
caused by ambiguous textual process descriptions.

4. Conformance checking in the context of behavioral uncertainty. By capturing
behavioral uncertainty in processes using behavioral spaces, automated analysis
techniques can be used that are otherwise not applicable or may produce incor-
rect results. In this thesis we demonstrate the usefulness of behavioral spaces by
applying them in the context of conformance checking. Conformance checking
aims to determine if observed behavior, as recorded by IT systems, conforms to
a particular process specification that denotes the allowed behavior. By using be-
havioral spaces for this task, we can obtain conformance-checking results in sit-
uations where traditional conformance-checking techniques yield untrustworthy
results. The results obtained by our techniques are probabilistic, differentiating
between conforming, nonconforming, and potentially conforming behavior. We
apply our conformance-checking technique in Chapters 4 and 5.

5. Transformation of natural language descriptions into measurable Process Per-
formance Indicators (PPIs). Monitoring process performance is an important
means for organizations to identify opportunities to improve their operations.
The definition of suitable PPIs represents a crucial task in this regard. Because
PPIs need to be in line with strategic business objectives, the formulation of
PPIs is a managerial concern. Managers typically start out to provide relevant
indicators in the form of natural language PPI descriptions. Therefore, consider-
able time and effort have to be invested to transform these descriptions into PPI
definitions that can be automatically monitored. To overcome these problems
associated with manual performed transformations, Chapter 6 presents a tech-
nique that automates this task. The technique builds on a conceptualization of
the way in which unstructured natural language descriptions convey the semantic
components required to define PPIs.

6. Process model matching based on event-log information. Process model match-
ing provides the basis for many process analysis techniques, such as inconsis-
tency detection and process querying. So-called matchers aim to automatically
identify correspondences between activities in two process models. The numer-
ous techniques that have been developed for this purpose all share a focus on

6 1.3. METHODOLOGICAL BACKGROUND

process-level information. Therefore, they do not exploit process information
contained in event logs associated with the models, which can be helpful for the
identification of model correspondences. Chapter 7 shows the potential of using
event-log information in process model matching. The matchers we introduce
build on six conceptual notions that indicate similarity between event classes.

1.3 Methodological Background

The research presented in this thesis is conducted in the context of the Information
Systems (IS) research discipline. IS research aims to further knowledge that aids in
the productive application of Information Technology (IT) to organizations [129]. It
is a strongly interdisciplinary field of study that applies theories from social sciences,
economics, and computer science. IS research involves two complementary paradigms:
behavioral science and design science (cf. [117, 122, 209]).

Behavioral science is concerned with the development and justification of theories
that explain or predict phenomena surrounding the analysis, design, implementation,
management, and use of information systems [122]. Such theories ultimately inform
researchers and practitioners of the interactions among people, technology, and organi-
zations that must be managed if an information system is to achieve its stated purpose:
improving the effectiveness and efficiency of an organization. Design science is funda-
mentally a problem-solving paradigm that has its roots in engineering and the sciences
of the artificial [252]. It seeks to create innovations that define the ideas, practices,
technical capabilities, and products through which the analysis, design, implementa-
tion, management, and use of information systems can be effectively and efficiently ac-
complished [76, 261]. In particular, design science can be used to addresses problems
that are characterized as wicked, which means that they do not have a definitive formu-
lation [122]. Because of this wickedness, solutions to such design-science problems
cannot be assessed by truth, but rather by utility. Therefore, Simon [252] advocates to
accept satisficing solutions by designing and creating useful artifacts. In summary, it
can be said that the goal of behavioral-science research is truth and the goal of design-
science research is utility [122].

The research design of this thesis combines both paradigms, following the argu-
ment by Hevner et al. [122] that design and behavioral science are complementary:
“truth informs design and utility informs theory.” In this context, Hevner et al. suggest
a set of seven guidelines for effective information systems research that are particularly
applicable to works with a design-science focus. We use these guidelines as a basis to
discuss in how far this thesis meets information systems research standards:
Guideline 1: Design as an artifact. The goal of design-science research in IS is the
creation of purposeful IT artifacts that address important organizational problems. The
artifact must be described effectively, enabling its implementation and application in
an appropriate domain. An artifact can be a construct, model, method, or an instantia-
tion [122].

In this thesis we address organizational problems caused by the spread of process
information over various informational artifacts. Our contributions include novel con-
ceptualizations of behavioral uncertainty and event-class similarity, which play key

CHAPTER 1. INTRODUCTION 7

roles in specific application scenarios. Furthermore, we provide five methods, also
referred to as techniques, that allow organizations to more effectively deal with frag-
mented process information. For instance, one of the techniques allows organizations
to automatically identify inconsistencies between textual process descriptions and pro-
cess models. Thereby, the method supports organizations in their maintenance of pro-
cess information, helping to ensure that all processes are executed correctly and effi-
ciently. For each of these methods, we also present an instantiation (i.e., an implemen-
tation) in the form a Java prototype in order to demonstrate the method’s applicability.

Guideline 2: Problem relevance. The relevance of design-science research is de-
termined by addressing problems that are of value to a constituent community. For IS
research, this community consists of practitioners who plan, manage, design, imple-
ment, operate, and evaluate information systems and the technologies that enable their
development and implementation [122].

The general relevance of the research presented in this thesis stems from the wide-
spread adoption of BPM in organizations (see e.g., [221, 254, 256]). Therefore, BPM
research is of value to the community of BPM practitioners and the organizations in
which BPM practices are applied. On a more specific level, the relevance of each of
the problems that we address with our research was identified in existing literature or
followed directly from the limitations of state-of-the-art solutions to effectively address
the respective problems. For example, Chapter 4 presents a method for conformance
checking in the context of uncertain mappings between event logs and process models.
The relevance of this technique stems from the importance of conformance checking
to ensure that processes are executed according to their specification [16, 21, 239], in
combination with the inherent inability of mapping techniques to identify a single,
correct mapping [40].

Guideline 3: Design evaluation. The utility, quality, and efficacy of a design
artifact must be rigorously demonstrated via well-executed evaluation methods. The
business environment establishes the requirements upon which the evaluation of arti-
facts should be based. The evaluation of a designed IT artifact requires the definition
of appropriate metrics and the gathering and analysis of appropriate data [122].

We evaluate all research contributions in this thesis based on data collections that
were obtained from industrial and academic partners, i.e., so-called real-life data. For
each contribution, we employ metrics that quantify the usefulness of the developed ar-
tifact for characteristics relevant to the specific problem addressed by the artifact. For
example, to evaluate our technique for inconsistency detection between textual pro-
cess descriptions and process models, we employ the well-known precision and recall
metrics from the information-retrieval field [179, p.142]. In this context, precision
quantifies the fraction of predictions made by the method that correspond to actual
inconsistencies, whereas recall provides the fraction of actual inconsistencies that are
successfully identified by the method.

Guideline 4: Research contribution. Design-science research must provide a
novel, significant, and general contribution to the knowledge base. This requirement
excludes so-called routine design, which is characterized by the application of existing
knowledge and best-practices. Rather, scientific design requires the application of inno-
vative methods to address unresolved problems or to improve existing solutions [122].

The research contributions of this thesis all meet this criteria by either address-

8 1.3. METHODOLOGICAL BACKGROUND

ing previously unresolved problems or by providing a considerable improvement over
existing solutions. In particular, this thesis presents several techniques which are the
first to address certain problems. For instance, we present the first approaches for the
automated comparison of textual process descriptions to process models and the trans-
formation of natural language PPI descriptions. Furthermore, we present conformance-
checking methods that build on a novel conceptualization of process uncertainty that
considerably improves their practical applicability over existing methods. Lastly, our
technique for process model matching can obtain results that existing techniques are
unable to achieve, because our method analyzes event-log information, which is ig-
nored by others.

Guideline 5: Research rigor. Design-science research requires the application of
rigorous methods in both the construction and evaluation of designed artifacts. In this
context, rigor is derived from the effective use of the knowledge base, i.e., theoretical
foundations and research methodologies. Success is predicated on the researcher’s
skilled selection of appropriate techniques to develop or construct an artifact and the
selection of appropriate means to evaluate it [122].

In the creation of our design artifacts, we made effective use of research from var-
ious research streams, including process model analysis, Natural Language Process-
ing (NLP), process model matching, and machine learning. For example, both of our
conformance-checking techniques build on existing conformance-checking approaches
used in process analysis [281], whereas our techniques that analyze textual process de-
scriptions build on a state-of-the-art technique presented in [99]. Furthermore, we
formalize the designed artifacts such that readers can successfully reconstruct their
functionality.

Guideline 6: Design as a search process. Problem solving in design science
can be defined as utilizing suitable means to reach desired ends while respecting laws
imposed by the environment [252]. It is an inherently iterative process that consists of a
generate/test cycle. Given the wickedness of most IS problems, it may not be possible
to describe all means, ends, and laws relevant to a problem [269]. Hence, design-
science research often aims for a satisfactory solution without the need to consider all
possible solutions [252].

To varying degrees, all our research contributions deal with the analysis of natural
language in process-information artifacts. Due to the variability of natural language,
it is not possible define all aspects (e.g., laws) of the problems. This leads to a the-
oretically indefinite number of ways to address the problems on which our research
focuses. Therefore, rather than undertaking the impossible task of searching through
all possibilities, we aim to construct a satisfactory solution to each of the considered
research problems. For example, due to variability of natural language, it is impossible
to define an approach that can perfectly analyze every conceivable textual process de-
scription. As a result, our method for the detection of inconsistencies between textual
descriptions and process models may not be able to identify every single inconsistency,
but rather strives for the accurate identification of the vast majority of inconsistencies.
We justify the satisfactory nature of our solutions by comparing the evaluation results
of the solutions to state-of-the-art techniques or other relevant benchmarks.

Guideline 7: Communication of research. Design-science research must be pre-
sented both to technology-oriented as well as management-oriented audiences [122].

CHAPTER 1. INTRODUCTION 9

Technology-oriented audiences need sufficient detail to enable the implementation of
described artifacts and their use within an appropriate organizational context. Manage-
ment-oriented audiences need sufficient detail to determine if organizational resources
should be committed to obtain and use the artifact within their specific organizational
context. Zmud [294] furthermore suggests that the emphasis for management-oriented
audiences should be on the importance of the problem, as well as the novelty and ef-
fectiveness of the solution.

Each of the contributions presented in this thesis has been published in peer-re-
viewed academic journals and/or international conferences (see Section 1.4). Further-
more, we provide prototypical open source implementations for each of the designed
artifacts. Hence, the presented techniques are readily available to interested researchers
and practitioners.

The discussion of the design-science research guidelines in relation to the work
presented in this thesis illustrates that our research contributions fulfill internationally
established research standards. Further, the discussion shows that the presented re-
search makes a significant contribution to the body of knowledge of the IS discipline.

1.4 Publications
This doctoral thesis is a monograph that presents research on the comparison and
alignment of process information in various representation formats. Parts of this re-
search have also appeared in peer-reviewed, scientific outlets, which has currently
led to the publication of 2 journal articles and 7 conference papers. In comparison
to these publications, this doctoral thesis presents the conducted research in a more
extensive and integrated manner. Furthermore, Chapter 5 contains considerable con-
ceptual extensions and additional evaluations in comparison to the form in which the
conformance-checking approach has currently been published. The following list pro-
vides an overview of the publications stemming from the research in this doctoral the-
sis:

The spread of process information in organizations:

• Van der Aa, H., Leopold, H., Mannhardt, F., Reijers, H.A.: On the fragmenta-
tion of process information: Challenges, solutions, and outlook. In: International
Conference on Enterprise, Business-Process and Information Systems Modeling,
pp. 3–18. Springer (2015)

• Van der Aa, H., Leopold, H., van de Weerd, I., Reijers, H.A.: Causes and conse-
quences of fragmented process information: Insights from a case study. In: 23rd
Americas Conference on Information Systems, AMCIS (2017)

Comparing process models to textual process descriptions:

• Van der Aa, H., Leopold, H., Reijers, H.A.: Detecting inconsistencies between
process models and textual descriptions. In: International Conference on Busi-
ness Process Management, pp. 90–105. Springer (2015)

10 1.4. PUBLICATIONS

• Van der Aa, H., Leopold, H., Reijers, H.A.: Comparing textual descriptions to
process models: The automatic detection of inconsistencies. Information Sys-
tems 64, 447–460 (2017)

Reasoning in the presence of behavioral uncertainty:

• Van der Aa, H., Leopold, H., Reijers, H.A.: Dealing with behavioral ambiguity
in textual process descriptions. In: International Conference on Business Process
Management. pp. 271–288. Springer (2016)

• Van der Aa, H., Leopold, H., Reijers, H.A.: Checking process compliance on the
basis of uncertain event-to-activity mappings. In: International Conference on
Advanced Information Systems Engineering. pp. 79–93. Springer (2017)

Aligning and transforming natural language PPIs:

• Van der Aa, H., Del-Rı́o-Ortega, A., Resinas, M., Leopold, H., Ruiz-Cortés,
A., Mendling, J., Reijers, H.A.: Narrowing the business-IT gap in process per-
formance measurement. In: International Conference on Advanced Information
Systems Engineering. pp. 543–557. Springer (2016)

• Van der Aa, H., Leopold, H., del Rio-Ortega, A., Resinas, M., Reijers, H.A.:
Transforming unstructured natural language descriptions into measurable pro-
cess performance indicators using hidden markov models. Information Systems
71, 27–39 (2017)

Process model matching based on event-log information:

• Van der Aa, H., Gal, A., Leopold, H., Reijers, H.A., Sagi, T., Shraga, R.: Instance-
based process matching using event-log information. In: International Confer-
ence on Advanced Information Systems Engineering. pp. 283–297. Springer
(2017)

The author of this doctoral thesis has also contributed to several research projects
beyond the scope of the monograph. These projects have currently led to the publica-
tion of 2 journal articles, 4 conference papers, and 1 workshop paper. These publica-
tions focus on, among others, the composition of workflow activities, business process
noncompliance, process querying, evaluation of process model matching, and the pre-
diction of deviations in logistics chains. The following list provides an overview of the
publications:

Other publications:

• Van der Aa, H., Reijers, H.A., Vanderfeesten, I.: Composing workflow activities
on the basis of data-flow structures. In: International Conference on Business
Process Management, pp. 275–282. Springer (2013)

CHAPTER 1. INTRODUCTION 11

• Van der Aa, H., Leopold, H., Batoulis, K., Weske, M., Reijers, H.A.: Integrated
process and decision modeling for data-driven processes. In: Business Process
Management Workshops. pp. 405–417. Springer (2015)

• Van der Aa, H., Reijers, H.A., Vanderfeesten, I.: Designing like a pro: The au-
tomated composition of workflow activities. Computers in industry 75, 162–177
(2016)

• Andrade, E., van der Aa, H., Leopold, H., Alter, S., Reijers, H.A.: Factors leading
to business process noncompliance and its positive and negative effects: Empir-
ical insights from a case study. In: 22nd Americas Conference on Information
Systems, AMCIS (2016)

• Di Ciccio, C., Van der Aa, H., Cabanillas, C., Mendling, J., Prescher, J.: Detect-
ing flight trajectory anomalies and predicting diversions in freight transportation.
Decision Support Systems 88, 1–17 (2016)

• Kuss, E., Leopold, H., Van der Aa, H., Stuckenschmidt, H., Reijers, H.A.: Prob-
abilistic evaluation of process model matching techniques. In: Conceptual Mod-
eling: 35th International Conference, ER 2016, Gifu, Japan, November 14-17,
2016, Proceedings 35. pp. 279–292. Springer (2016)

• Leopold, H., van der Aa, H., Pittke, F., Raffel, M., Mendling, J., Reijers, H.A.:
Integrating textual and model-based process descriptions for comprehensive pro-
cess search. In: International Conference on Enterprise, Business-Process and
Information Systems Modeling. pp. 51–65. Springer (2016)

1.5 Thesis Outline
The remainder of this thesis is divided into the following seven chapters:

• Chapter 2: Background. This chapter provides background information essential
to the alignment and comparison of process information contained in different
informational artifacts. The chapter focuses on three relevant aspects: (i) process
information in organizations, (ii) NLP tasks and techniques, and (iii) application
scenarios and techniques of matching.
• Chapter 3: Comparing Process Models to Textual Process Descriptions. This

chapter presents our technique for the automated detection of inconsistencies
between process models and textual process descriptions. In particular, our tech-
nique identifies two types of inconsistencies: (i) process model activities that
are not contained the accompanying textual description and (ii) conflicting or-
ders between process model activities and process steps described in the text. A
quantitative evaluation with 53 real-world model-text pairs demonstrates that our
four-step approach accurately identifies these inconsistencies.
• Chapter 4: Conformance Checking based on Uncertain Event-Activity Map-

pings. This chapter presents a conformance-checking technique that can be used
in the presence of uncertain event-to-activity mappings. Our technique provides

12 1.5. THESIS OUTLINE

conformance-checking results without the need to select a single, possibly incor-
rect mapping to base conformance checks on. We achieve this by considering
the entire spectrum of possible mappings generated by event-to-activity map-
ping techniques. As a result, our conformance-checking technique avoids the
risk of drawing incorrect conclusions about conformance. A quantitative eval-
uation based on a large collection of real-world process models demonstrates
that our technique can be used to obtain results in a vast number of cases where
traditional conformance-checking techniques fail to do so.
• Chapter 5: Dealing with Ambiguity in Textual Process Descriptions. This chap-

ter presents our method which checks the conformance of observed process be-
havior against ambiguous textual descriptions. The method builds behavioral
spaces as a means to capture all possible interpretations of a textual process de-
scription in a systematic manner. By using behavioral spaces for conformance
checking, we avoid the need to impose assumptions on the correct interpretations
of ambiguous natural language texts. Therefore, conformance checks based on
behavioral spaces avoid the risks associated with the assumption-based selec-
tion of interpretations. We use a quantitative evaluation with a set of 47 textual
process descriptions to demonstrate the usefulness of behavioral spaces for con-
formance checking in the context of real-world textual descriptions.
• Chapter 6: Transforming and Aligning Process Performance Indicators. This

chapter presents our approach for the automated transformation of natural lan-
guage descriptions into measurable PPIs. The proposed approach first trans-
forms an unstructured natural language description into a structured format. In
this step, it extracts information on concepts relevant to the calculation of a PPI
from the natural language description. Secondly, our approach aligns the pro-
cess concepts contained in the description with the corresponding elements of a
process model. To this end, it establishes links between a PPI description and
the implementation of the process. As a result, the approach delivers structured
and aligned PPI descriptions that can be directly used for automated monitor-
ing of process performance. We use a quantitative evaluation with a set of 129
PPI descriptions obtained from practice to demonstrate that our approach works
accurately.
• Chapter 7: Process Model Matching using Event-Log Information. This chapter

presents techniques for process model matching based on event-log informa-
tion. We present six different matchers to quantify process similarity based on
event logs. A quantitative evaluation with real-world data shows that by just
considering the information specific to event logs, our matchers can identify a
considerable number of correspondences between event classes. By combin-
ing our instance-based matching techniques with traditional, model-based tech-
niques users can strive to obtain matching results that cannot be obtained by
using either of these techniques alone.
• Chapter 8: Conclusion. This chapter concludes the doctoral thesis. In this chap-

ter, we summarize the main results presented throughout the thesis. Furthermore,
we reflect on the implications of these results for research and practice, as well
as on directions for future research that stem from the presented work.

2
Background

This chapter discusses background essential to the alignment of process information
contained in different informational artifacts. The chapter consists of three parts, each
of which focuses on an aspect relevant to any alignment task, as visualized in Fig-
ure 2.1. The input to an alignment task is formed by two informational artifacts related
to a business process. Section 2.1 reflects on these input artifacts by discussing the role
and presence of process information in organizations, whereas Section 2.2 provides
formal definitions for the main types of informational artifacts contained in this thesis.

In the first step of an alignment task, relevant process information is extracted from
the informational artifacts. A major part of the process information considered in
this thesis is described in the form of natural language. Therefore, Section 2.3 dis-
cusses Natural Language Processing (NLP) techniques that form the foundation for
this information-extraction step. Afterwards, the information extracted from the two
artifacts must be related to each other in order to obtain the alignments that form the
basis for various analysis techniques, such as the detection of inconsistencies between
the artifacts and process querying. So-called matching techniques aim to automatically
establish such alignments. Therefore, Section 2.4 presents an overview of the relevant
aspects of matching.

2.1 Process Information in Organizations

This section gives an overview of the role and presence of process information in orga-
nizations. Section 2.1.1 introduces the discipline of BPM, which provides the context
for the use of process information. Section 2.1.2 then defines the notion of process
information and discusses its importance throughout the various phases of a BPM life-
cycle. Afterwards, Section 2.1.3 describes the task of capturing process information
in the form of informational artifacts and the associated causes of process-information
fragmentation. Finally, Section 2.1.4 concludes this overview by considering the neg-
ative impact that the fragmentation of process information can have on organizations.

13

14 2.1. PROCESS INFORMATION IN ORGANIZATIONS

Extract process
information

Align extracted
information

Informational
artifact A

Informational
artifact B

Alignment
result

Figure 2.1: Overview of a generic alignment task

2.1.1 Business Process Management
Business Process Management (BPM) aims for the efficient coordination of business-
related activities within and between organizations [186, p.5]. BPM represents one of
the core concepts that enables organizations to flexibly react to constantly changing
business environments [162, p.1]. The focal point and core concept of BPM, as well
as of this thesis, is a business process. A multitude of definitions for this concept have
been provided in literature. A seminal definition by Hammer and Champy [121, p.38]
characterizes a business process as a collection of activities, transforming an input into
an output that is valuable for a customer. This definition pinpoints two key concepts
present in most definitions: a collection of activities (or process steps) and an output
that provides value to a customer. Regarding the collection of activities in a business
process, other definitions provide a more strict view. Davenport and Short describe this
collection as a “set of logically related-tasks” [71], Dumas et al. [87, p.5] as a “chain of
events, activities, and decisions,” while Van der Aalst and Van Hee [18] emphasize that
the order of activities is determined by pre-defined conditions. Hammer and Champy’s
definition also states that the output should provide value to a customer. This customer
can either be external or internal to the organization [87, p.4]. Furthermore, Becker and
Kugeler [46] stress that this goal is directed by the business objectives and environment
of an organization. Without a loss of generality, we here adopt the definition by Dumas
et al. because it emphasizes the core aspects of business processes that are relevant to
this thesis.

Definition 2.1 (Business Process). A business process is a collection of inter-related
events, activities and decision points that involve a number of actors and objects, and
that collectively lead to an outcome that is of value to at least one customer [87, p.5].

Despite the widespread use of the term Business Process Management, there is no
agreement on its meaning. Rather, there are certain activities with respect to business
processes that are commonly gathered under this name [229, p.11]. Notably: the de-
sign, analysis, modeling, implementation and control of business processes [18, 75,
247]. Since this thesis focuses on process information from various sources and for a
broad variety of BPM purposes, we adopt the definition of BPM proposed by Van der
Aalst et al. [17]:

CHAPTER 2. BACKGROUND 15

Definition 2.2 (Business Process Management (BPM)). BPM supports business pro-
cesses using methods, techniques, and software to design, enact, control, and analyze
operational processes involving humans, organizations, applications, documents and
other sources of information [17].

In the next section, we describe and define process information as information
specifically related to BPM activities.

2.1.2 Process Information
To be able to reflect on the role of process information in BPM, we need to define what
the term process information refers to. To do so, we first need to investigate the notion
of information itself. In IT or IS contexts, information is typically defined by distin-
guishing it from knowledge and data [27]. There are different views on this distinction.
What they share is the idea that the three form a hierarchy, such as depicted in Fig-
ure 2.2. For example, Vance [267] defines information as data that has been interpreted
in the context of a meaningful framework, whereas knowledge is information that has
been authenticated and thought to be true. Maglitta [177] characterizes data as raw
numbers and facts, information as processed data, and knowledge as information that
has been made actionable.

Data
Raw numbers and facts

Information
Processed data

Knowledge
Personalized information

Figure 2.2: Hierarchy between data, information, and knowledge (adapted from [59])

The key characteristic that distinguishes knowledge from information throughout
the definitions is that knowledge is information that exists in the mind of individu-
als [27]. It is personalized information, which may or not be unique or correct. As Fa-
hey and Prusak [91] suggest, “knowledge does not exist independently of the knower.”
This implies that according to a strict definition, knowledge cannot exist in documents,
systems, or other artifacts. Information is converted to knowledge once it is processed
in the mind of individuals and knowledge becomes information once it is articulated
and presented in the form of text, graphics, or other forms [27].

The typical characteristic used to distinguish data from information is that the lat-
ter has undergone some form of processing. However, as Alavi and Leidner [27] point

16 2.1. PROCESS INFORMATION IN ORGANIZATIONS

out, the presumption of a strict hierarchy between these two rarely survives a thorough
evaluation. Whether something is data or information can depend on the particular
need of a user. For instance, a timetable for a train can be regarded as raw data by
some, but may very well provide information instead of data to a user who is interested
in learning which train to take for a trip. Because of this fuzzy boundary, we adopt a
broad view on what we consider process information in this thesis. Specifically, we
consider anything that has a process-orientation, which has been captured in a doc-
ument, system, or through other means, as information. This includes, for example,
event-log information that has been automatically recorded and stored. However, this
view on information excludes raw numbers without a known relation to a process or its
activities. Instead, we regard those as data.

Building on this notion of information, we characterize process information as in-
formation that is relevant to BPM activities. Michelberger et al. [190] present a defini-
tion of process information that captures this:

Definition 2.3 (Process information). Process information refers to data that has been
processed to support process users in the modeling, execution, monitoring, optimiza-
tion, and design of processes, so that it has a meaning and value with respect to the
process users’ activities [190].

There is no established taxonomy of informational artifacts that suits this or other
definitions of process information. However, it is clear from literature that process in-
formation encompasses a broad variety of types and formats. Michelberger et al. [190]
consider process information to include textual process descriptions, working guide-
lines, graphical process models, operational instructions, forms, checklists, lessons
learned, and best practices. Other types of process information relevant to this the-
sis are (definitions of) PPIs [233] and event logs [13]. One way to understand why this
broad range of process-information artifacts exists is to reflect on why and how process
information is captured by organizations. This is considered in Section 2.1.3.

2.1.3 Capturing Process Information
Following Browning [55] and Figl and Recker [93], we can draw a parallel between
the task of capturing process information, in any format, and the task of modeling a
business process. This parallel is useful because key principles of modeling are also
applicable to other means of capturing process information, such as textual descrip-
tions and checklists. Before investigating the principles of modeling, it is important
to recognize that these apply to the task of capturing information manually, as well as
automatically. Automatically capturing process information occurs, for instance when
recording event-log information or generating a process model from an event log. The
key difference here is that when manually capturing information, decisions on what
information to capture and how to do so are made while modeling (akin to run-time
decisions). When automatically capturing information similar decisions have to be
made. However, by contrast, the decisions are then made when selecting or designing
the technique that performs the capturing (i.e., design-time decisions).

Different definitions for the concept of a model are proposed in literature. Sta-
chowiak [258, p.131] defines a model as a simplifying mapping from reality that serves

CHAPTER 2. BACKGROUND 17

Task requirements
(purpose)

Technology characteristics
(content and arrangement)

Task-Technology
Fit (TTF) Task performance

Figure 2.3: Main constructs in Task-Technology Fit (TTF) theory

a specific purpose. Steiger [259] defines it as an abstract representation of reality that
is built, verified, analyzed, and manipulated to support a particular purpose, even if
that purpose is merely to increase understanding of a situation. What these and other
definitions share are two crucial, related characteristics: (i) a model is a simplification
of reality and (ii) a model has a specific purpose. The combination of these charac-
teristics results in the maxim by Box [50] that “all models are wrong, but some are
useful.” Models are “wrong”, because they do not fully represent reality, but rather
selectively abstract key information. Therefore, a model provides a simplification of
reality tailored to the needs of a specific purpose.

To be able to reflect on the purpose of a model in detail, Browning [55] draws
an insightful parallel between the usefulness of a model for a particular purpose and
Task-Technology Fit (TTF) theory. TTF theory, introduced by Goodhue and Thom-
son [113], argues that a technology (i.e., a means to accomplish a task) will improve a
user’s performance if it matches the task’s requirements well. In a BPM context, this
means that a model of a process is more useful if it provides the right information in a
suitable manner. Therefore, the informational content and representation format of an
informational artifact must be in line with the artifact’s intended purpose. This can also
be seen in Figure 2.3, where the characteristics of a technology are defined according
to its content and arrangement (i.e., its representation format).

Informational content

To accommodate for the information needs of various stakeholders involved in the
BPM lifecycle, process-information artifacts often differ in terms of their informational
content. These differences can be described according to two main dimensions: the
provided level of detail and the perspective taken on a process.

First, informational artifacts vary in the level of detail that they provide to users. For
instance, process owners and process analysts typically require an overview of an entire
process [87, p.24]. Artifacts such as process models are well-suited for this purpose,
because they can provide a high-level view on a process by describing it from start to
end. For other stakeholders, most notably process participants, it is more important
to understand how to perform certain tasks, than to understand the whole process. For
these stakeholders, work instructions are more useful, because they provide detailed
information on the execution of specific tasks [94].

Second, informational artifacts provide information regarding different process per-

18 2.1. PROCESS INFORMATION IN ORGANIZATIONS

spectives. A typical distinction can here be made between the technical and operational
perspectives [280]. For example, a process model designed to support process imple-
mentation will emphasize technical details, such as the applications that should be
called and the IT systems to be accessed. By contrast, a process model that takes an
operational perspective will focus on the tasks that must be performed and, for instance,
who should perform these. The difference between models that cover these perspec-
tives is representative of the well-known Business-IT-Gap (cf. [149, 174]). As another
example, process owners can be mainly concerned with aspects related to the perfor-
mance perspective of processes [233], rather than operational or technical perspectives.

Representation Formats

A variety of representation formats can be used to capture process information in in-
formational artifacts [287], including process models [72], natural language descrip-
tions [212], spreadsheets [152], and checklists [230]. The representation format used
to provide process information to users should be well-suited for its particular purpose.
This suitability depends on two main factors. A format should convey its informational
content in a useful manner and the intended users should be able to work with the
utilized format well.

Representation formats emphasize different aspects of business processes. This
means that the choice for a certain representation format depends on the intended fo-
cus of an informational artifact. For instance, natural language text can be very use-
ful to provide process participants with detailed insights on how to perform complex
tasks [39]. However, for a process participant who needs to be sure that all neces-
sary steps are performed, a checklist is more useful. This latter format is more suit-
able because it emphasizes the information that is of primary importance for that pur-
pose. Furthermore, process models have been found to be better suited to express
complex execution logic of a process in a more comprehensive manner than natural
language [186, p.23].

It is also important that users of an informational artifact are able to work well with
an employed representation format. The ability of users to do so can depend on their
familiarity and preferences with respect to different formats. Research by Figl and
Recker [93] shows that people prefer different process representation formats depend-
ing on the application purpose and on the cognitive style of the user. For example, some
participants were found to prefer textual descriptions over process models, whereas
others preferred models over text for the same purpose. The influence of user prefer-
ences on the choice for model or text-based process representations is also recognized
by Recker et al. [228] and Chakraborty et al. [60].

Fragmentation

The need for the availability of artifacts with different informational contents and rep-
resentation formats means that often multiple artifacts are required to provide infor-
mation on a single business process. Figure 2.4 depicts a classical example of this
situation. The figure shows three informational artifacts that capture information on
a loan application process: (1) a process model, (2) a natural language work instruc-

CHAPTER 2. BACKGROUND 19

C
re

di
t o

ffi
ce

Receive loan  
application

Check
application

completeness

Perform
credit check

Send
loan offer

Invite for
interview

Perform credit check

To perform this activity, a junior loan
officer will evaluate the income and
the credit history of the applicant. An
applicant wil l be immediately
rejected for a loan in case he has a
credit score below…

q  Application is complete
q  Basic credit check

passed
q  Applicant interviewed
q  Loan offer sent

Loan-assessment
process checklist

(1)

(2) (3)

Figure 2.4: Loan application process with fragmented process information

tion, and (3) a checklist. This fragmentation has clear advantages because it allows
an organization to provide users with the process information that is most relevant to
them, in a suitable format. For instance, a process participant who performs a credit
check in the loan application process can use the textual work instruction (2) to obtain
all information relevant to the execution of this particular task. By contrast, a different
participant can use the checklist (3) as a means to ensure that all necessary steps have
been performed when assessing a loan application, before sending the loan offer to the
applicant. However, despite these advantages of having various informational artifacts,
the spread of process information can also pose considerable threats to the efficient ex-
ecution and management of an organization’s processes. We reflect on this in the next
section.

2.1.4 The Problem of Fragmented Process Information
The fragmentation of process information over different informational artifacts can
pose considerable problems to organizations. To understand the possible severity of
these issues, it is important to grasp how fragmented process information can be in
practice. For this purpose, we first illustrate this based on our observations during a
case study described in [10]. In this case study, we investigated the existence and use
of informational artifacts related to 23 processes of the procurement department of a
major manufacturing company.

We found that process information was highly fragmented for some of the inves-
tigated processes. One of the most severe instances was observed for a purchasing
approval process. We found more than 100 informational artifacts related to this single
business process. Table 2.1 provides an overview of these artifacts, which we subdi-
vided according to their information types and representation formats. Aside from the
fragmentation in the form of this large number of informational artifacts, it is also im-
portant to note that these artifacts were spread out over various information systems.

1The organization used this format for materials in training settings.
2An informational artifact that contains both high-level and low-level process information, combining

contents from textual process descriptions with work instructions.

20 2.1. PROCESS INFORMATION IN ORGANIZATIONS

Table 2.1: Informational artifacts for a purchasing approval process (from [10])

Information type Representation Format Quantity

Process model EPC 1

Process description
Text document 5
Slide set1 1

Work instruction

Text document 30+

Spreadsheet 2
Slide set 30+

Video1 15
E-learning module1 1

Hybrid documentation2 Text document 20+

E-learning module 1

This latter problem occurs when process information is managed separately from the
business processes themselves [190]. Process information is, for example, stored in
shared drives, databases, enterprise portals, content management systems, and enter-
prise information systems [189, p.4].

Given a situation such as described above, the fragmentation of process informa-
tion threatens the effective management and execution of an organization’s business
processes. We identify three main kinds of problems that occur due to fragmentation:
(i) maintenance issues, (ii) efficiency issues, and (iii) business process noncompliance.

Maintenance Issues

Adapting business processes in order to respond to changing business needs is at the
very heart of BPM [285]. Therefore, keeping process information in sync with contin-
uous process improvement efforts is a highly important task [124]. This maintenance
task is severely affected by the fragmentation of process information. Clearly, when
more artifacts are affected by a process change, more effort is required to update all
artifacts. However, the total effort can far exceed the time spent on actually updating
information in the artifacts. If there is no traceability between process information con-
tained in different artifacts, then considerable time must be invested to determine which
information and which artifacts should be changed. In our case study, we found that the
required efforts to maintain process information were very high. As one interviewee
remarked: “Sometimes a small change can mean tremendous effort.”

The amount of time and effort required to maintain process information repre-
sents a considerable problem in itself. However, it is crucial to recognize that orga-
nizations can only spend limited resources on maintenance, or any BPM activities in
general [87, p.33]. Therefore, organizations may not be able to allocate sufficient re-
sources to keep all process information in sync with reality. This comes with the highly
problematic consequence that information can become outdated. In our case study, one
of the interviewees described a recent clean-up effort in which 120 obsolete documents,

CHAPTER 2. BACKGROUND 21

related to a handful of processes, were identified. When users execute processes based
on such outdated information, this can lead to efficiency issues as well as business
process noncompliance, as we discuss next.

Efficiency Issues

The fragmentation of process information can negatively affect the execution efficiency
of processes. This can occur for two general reasons.

First, fragmentation can affect efficiency because it makes it hard for users to find
the information that they need to perform their tasks in a process [55]. Because users
may not have an overview of available process information [190], they may need to
browse through numerous documents and systems before they find what they need.
Such identification of information relevant to a specific work context has been recog-
nized to be highly time-consuming and complex [238]. The time and effort required
for this thus reduces the efficiency of the processes in which the user is involved. This
consequence stands in sharp contrast to one of the major reasons why process infor-
mation is fragmented. Namely, fragmentation occurs in order to provide users with the
information that they need. However, this benefit is only achieved if users can actually
find the right information in the first place.

Second, the execution efficiency of processes can be reduced because process par-
ticipants do not have the right information that they need [35]. This can occur when
the quality of process information is insufficient [191], such as when participants ac-
cess outdated or otherwise incorrect processes. Furthermore, it can also happen that
relevant process information has simply not been documented. For instance, in our
case study, we observed cases where the authors of process descriptions chose not to
describe certain steps that they perceived as trivial or irrelevant, but are in fact im-
portant to the users of the information. For instance, an interviewee—who oversees
a process that provides reports (in the form of spreadsheets) related to strategic deci-
sions—described the following: “some process steps are not included [in the textual
process descriptions], because they seemed natural to the designer. This leads to prob-
lems when working with the spreadsheets.” Due to these issues, the interviewee spent
the majority of her days cleaning up errors in these reports. In another case, a procure-
ment manager acknowledged that he heavily relies on undocumented knowledge when
performing his tasks. As a result, when he is absent, his replacement fails to perform
certain tasks that should actually be performed on a daily basis.

These issues caused by the fragmentation of process information result in situa-
tions where considerable more time, effort, and, therefore, costs are required for the
execution of an organization’s processes than necessary.

Business Process Noncompliance

Business process noncompliance can be defined as any behavior that does not conform
to the intended specification of a process [30]. Noncompliant actions can occur in var-
ious forms, such as the accidental omission of tasks, performing tasks incorrectly, or
performing tasks without the proper authorization [263]. In the context of process-
information fragmentation, noncompliant actions occur for the same reason as some

22 2.1. PROCESS INFORMATION IN ORGANIZATIONS

of the instances which lead to inefficient process execution: users execute processes
based on incorrect or outdated process information [31]. In these cases, the use of
incorrect process information negatively affects the outcome of the process. These
effects of noncompliance can be severe, including a loss of control over business pro-
cesses [239], reduced quality of process outcomes [31], or financial penalties imposed
by authorities [173].

In our case study, we observed several instances of noncompliance caused by ac-
cess to incorrect process information. In the above, we described a situation where a
process owner spent considerable time correcting mistakes in spreadsheets-based re-
ports, resulting from the incorrect execution of a reporting process. However, not all
mistakes were caught in this way. As a result, management still received incorrect re-
ports on strategic decisions made by the purchasing department. In another case, an
employee used an outdated process specification while creating purchase orders. This
ultimately led to extra costs incurred by the organization to clear up these problems
with the supplier.

Problem Mitigation

The aforementioned problems demonstrate that the fragmentation of process informa-
tion can have severe effects for organizations. From increased time spent on the exe-
cution and maintenance of processes, to noncompliance issues affecting the outcome
of processes. There are two general directions that can help organizations to mitigate
these problems: (i) reduce the extent of the fragmentation and (ii) maintain and use
fragmented information more efficiently.

The extent of process-information fragmentation can be reduced by removing ob-
solete or redundant informational artifacts. Informational artifacts that do not have a
distinct purpose from others should be discarded. In our case study, clean-up efforts re-
vealed the existence of numerous outdated documents, as well as documents that were
never actually used. Organizations can also take measures to prevent this situation by
establishing guidelines for the documentation of process information. Such guidelines
can, for instance, aim to standardize the content and structure of informational artifacts.
General guidelines can, for instance, be found for process models in the form of the
Seven Process Modeling Guidelines (7PMG) [187] and for use case descriptions [212].
A great additional benefit of standardization is that this makes process information eas-
ier to retrieve, which improves maintenance and execution efficiency. Nevertheless, it
is important to realize that, even in spite of such organizational measures, the frag-
mentation of process information cannot be wholly avoided. Process stakeholders use
informational artifacts for various purposes, which justifies the need for informational
artifacts with different contents and representation formats. This calls for means to
support this situation.

Technology can play an important role to support organizations to more efficiently
maintain and use fragmented process information. Research has proposed concepts
such as data warehouses as general solutions to provide users with information in
various representation formats (see e.g., [62]). However, the use of data warehouses
comes with great implementation efforts, requiring an overhaul of all existing process-
information artifacts. For this reason, techniques that provide support to deal with the

CHAPTER 2. BACKGROUND 23

current way in which processes are documented can be highly valuable. Existing tech-
niques, among others, focus on the propagation of process changes [280], the detection
of inconsistencies between process models [43, 123, 266], and the integration of in-
formation from different artifacts [157, 178]. A limitation is that this existing research
focuses primarily on highly-structured process information in the form of process mod-
els and event logs. Process information in less-structured formats, such as natural
language documents, is largely ignored by existing work. This leaves a considerable
research gap, which we aim to address in this thesis.

2.2 Core Definitions

The main process-information artifacts that we consider in the remainder of this thesis
are process models, event logs, textual process descriptions, and textual descriptions of
PPIs. The latter two artifacts comprise unstructured natural language text, for which no
formal definition can be provided. We formally define the former two artifacts, process
models and event logs, in the remainder of this section.

2.2.1 Process Models
Process models can be created using a variety of modeling languages, such as Petri nets,
Event-driven Process Chains (EPCs), and the Business Process Model and Notation
(BPMN). The contributions of this thesis that take process models into account are
independent of the specific notation used to define a process model. Therefore, we
define process models using a generic definition adapted from Smirnov et al. [255],
given in Definition 2.4.

Definition 2.4 (Process Model). A process model is a tuple M = (A, E,G,N, F, t),
where:
• A is a finite set of activities,
• E is a finite set of events,
• G is a finite set of gateways,
• N = A ∪ E ∪G is a finite set of nodes,
• F ⊆ N × N is the flow relation, such that (N, F) is a connected graph,
• t : G → {and, xor} is a mapping that associates each gateway with a type.

Figure 2.5 depicts an exemplary process model conforming to this definition. Roun-
ded rectangles denote activities from set A, such as “Check document completeness”.
Circles denote events from set E, such as “Application received”. Furthermore, the
arrows are used to depict the flow relation F that exist between nodes from the set
N = A ∪ E ∪ G. Gateways from set G, which represent routing points in the flow
F, are depicted by diamond shapes. The diamond shapes that contain a plus symbol
indicate concurrent streams of action. This means that, in the provided example, the
“Check document completeness” and “Evaluate credit score” activities can be executed
at the same time or in an arbitrary order. Finally, diamond shapes containing a cross
represent decision points. In Figure 2.5 either “Decide on high-value loan” or “Decide
on low-value loan” can be executed for a case going through the process, but not both.

24 2.2. CORE DEFINITIONS

Application received
Evaluate

credit score

Decide on
high-value

loan
Inform

applicant
Application

handled
Decide on
low-value

loan

Check
document

completeness

Figure 2.5: Exemplary process model of a loan application process

In order to precisely characterize the behavior that is allowed by a certain process
model, we first define the predecessors and successors of nodes, based on definitions
from Leopold [162, p.14].

Definition 2.5 (Predecessors and Successors). Let N be the set of nodes and F ⊆ N×N
a binary relation over N representing the flow relation. For each node n ∈ N, we define
the set of preceding nodes •n as {x ∈ N | (x, n) ∈ F} and the set of succeeding nodes
nodes n• as {x ∈ N | (n, x) ∈ F}.

Based on the predecessors and successors of nodes, we can define the sets of start
and end events of a process model. Given the set of events of a process model as E,
we define the start events as Estart = {e ∈ E | •e =}, i.e., the events without preceding
nodes, and the end events as Eend = {e ∈ E | e• =}, i.e., the events without succeeding
nodes. For the process model in Figure 2.5, Estart = {Application received} and Eend =

{Application handled}.

Table 2.2: Activity identifiers for the process model depicted in Figure 2.5

ID Activity

a Check document completeness
b Evaluate credit score
c Decide on high-value loan
d Decide on low-value loan
e Inform applicant

Given the sets of starts and end events of a model, we can define the set of allowed
execution sequences to capture all activity sequences that represent a proper execution
sequence of a process model. Given an activity set A, an activity sequence σ ∈ A∗ rep-
resents a sequence of activity executions, also denoted as σ = 〈a1, . . . , an〉, where for
each 1 ≤ i ≤ n it holds that ai ∈ A. For a process model M, we denote the set of allowed
execution sequences as Σvalid(M). An allowed execution sequence σ ∈ Σvalid(M) is a
sequence of activities between an event in Estart and an event in Eend that follows the ex-
ecution semantics of a process model. One way to formally determine these semantics
is to convert a process model into a Petri net, which can be achieved through trans-
formations described by Dijkman et al. [80]. Using the activity identifiers provided
in Table 2.2, the execution semantics of the model result in the following set of valid

CHAPTER 2. BACKGROUND 25

sequences for the model depicted in Figure 2.5: Σvalid(M) = {〈a, b, c, e〉, 〈b, a, c, e〉,
〈a, b, d, e〉, 〈b, a, d, e〉}.

2.2.2 Event Logs
Event logs are process-information artifacts that contain events recorded by systems
throughout the execution of a business process. These events represent run-time infor-
mation of how a process was actually executed. Table 2.3 shows a fragment of such
an event log. The table shows events related to the loan application process depicted
in Figure 2.5. This section presents the formal definitions of events and event logs
that are of relevance to the remainder of this thesis. These definitions are based on the
definitions provided by Van der Aalst [13, pp. 98–105].

Table 2.3: Excerpt of an exemplary event log

Properties

Case id Event id Timestamp Activity Resource . . .

1 129301 03-08-2017:11.02 Check doc. completeness Claudio . . .
129302 04-08-2017:15.24 Evaluate credit score Adela . . .
129303 07-08-2017:12.34 Decide on high value loan Ermeson . . .
129304 07-08-2017:13.30 Inform applicant Jeroen . . .

2 578401 09-10-2017:09.30 Check completeness Franzi . . .
578402 10-10-2017:15.24 Evaluate score Jennifer . . .
578403 11-10-2017:10:15. Decide on low value loan Giuseppe . . .
578404 11-10-2017:15.48 Inform applicant Justine . . .

.

Table 2.3 illustrates that each event is associated with various properties, also re-
ferred to as attributes. Definition 2.6 captures this.

Definition 2.6 (Event, Attribute). Let E be the event universe, i.e., the set of all possible
event identifiers. Events may be characterized by various attributes, e.g., an event
may have a timestamp, correspond to an activity, and be executed by a particular
resource. Let AN be a set of attribute names. For any event e ∈ E and attribute name
n ∈ AN : #n(e) is the value of attribute n for event e. If event e does not have an
attribute named n, then #n(e) = ⊥.

A number of standard attributes are generally assumed for events, although events are
not required to have values for any of these [13, p.101]:

• #activity(e) is the activity associated to event e;
• #timestamp(e) is the timestamp of event e;
• #resource(e) is the resource associated to event e.
• #trans(e) is the transaction type associated to event e, such as schedule, start, and

complete.

26 2.3. NATURAL LANGUAGE PROCESSING

Table 2.3 illustrates the majority of these attributes. For instance, the event in
the first row, with Event id 129301, corresponds to the “Check doc. completeness”
activity, has the timestamp 03-09-2017:11.02 and the resource executing the activity
was Claudio. Although, for brevity, not depicted in the table, events can also have a
trans attribute to capture the transaction type of an event. For example, the type start
can be used to denote the moment at which the execution of an activity began, whereas
complete can denote the moment at which the execution finished. These transactional
statuses are particularly important when measuring process performance in the form
of, for instance, processing times and waiting times.

Next, we define event classifiers as a means to group events together that share
a common attribute. In many cases, events are grouped either based on their activity
name, e.g., to create a set of events that all correspond to the “Create credit score” activ-
ity. However, events can also be classified based on (combinations of) other attributes,
such the combination of the #activity and #trans attributes. Throughout this thesis, without
loss of generality, we shall classify events based on the #activity attribute, as captured in
the following definition of event classes:

Definition 2.7 (Event Class). For any event e ∈ E , e = #activity(e) is the event class of
the event e.

Aside from the standard attributes, events can be associated with activity-specific
attributes. For instance, an event associated with the “Evaluate credit score” activity
will, most likely, be associated with an attribute that indicates the credit score that
results from the conducted evaluation. By contrast, events corresponding to different
activities will be associated with other specific attributes.

An event log consists of cases and cases consist of events. The events for a case are
represented in the form of a trace, i.e., a sequence of unique events. Moreover, cases,
like events, can have attributes.

Definition 2.8 (Case). Let C be the case universe, i.e., the set of all possible case
identifiers. Cases, like events, have attributes. For any case c ∈ C and attribute name
n ∈ AN : #n(c) is the value of attribute n for case c, where #n(c) = ⊥ indicates that
c has no attribute named n. Each case has a special attribute trace: #trace(c) ∈ E ∗.
ĉ = #trace(c) is a shorthand for referring to the trace of a case.

Definition 2.9 (Trace). A trace is a finite sequence of events σ ∈ E ∗ such that each
event appears only once, i.e., for 1 ≤ i < j ≤ |σ| : σ(i) , σ(j).

Definition 2.10 (Event log). An event log is a set of cases L ⊆ C such that each event
appears at most once in the entire log, i.e., for any c1, c2 ∈ L such that c1 , c2 :
δset(ĉ1) ∩ δset(ĉ2) = ∅.

Finally, we shall use E(L) to refer to the set of event classes of an event log L,
defined as E(L) = {#activity(e) | c ∈ L ∧ e ∈ ĉ}.

2.3 Natural Language Processing
Natural Language Processing (NLP) is the scientific study of natural languages from
a computational perspective [153]. Natural languages are the languages that people

CHAPTER 2. BACKGROUND 27

speak, which have evolved over time and are hard to pin down with explicit rules [48,
p.ix]. Research in NLP is highly interdisciplinary, involving concepts from the fields of
computer science, linguistics, logic, and psychology [132]. NLP techniques are used
in various application domains, including machine translation [143, 205], question an-
swering [288, 290], text classification [130, 201], and information extraction [82, 184].
In this thesis, NLP is used for tasks that are related to this last domain: the extraction of
information. Specifically, we use NLP techniques to extract process information from
natural language texts. For instance, given the sentence “Whenever a new order is re-
ceived, an engineer first checks if the required parts are available”, we can build on
NLP techniques to determine (i) which process steps are described, (ii) who performs
these steps, and (iii) which ordering relations exist between them.

In this section, we first describe the three main NLP tasks that are relevant to this
thesis. For the description of these tasks, our main goal is to clarify their usefulness,
i.e., what can be achieved with them. Therefore, we put less emphasis on the technical
aspects of approaches and implementations. Section 2.3.1 discusses part-of-speech
tagging, which assigns a role to words in a sentence. Then, Section 2.3.2 considers
parsing techniques, which identify the grammatical structure of sentences. Afterwards,
Section 2.3.3 considers reference resolution in natural language texts. Following the
discussion of the three main NLP tasks, Section 2.3.4 discusses the problem of natural
language ambiguity, which plays an important role in this thesis. Finally, Section 2.3.5
concludes this part with a discussion of existing works that apply NLP techniques in a
BPM context.

2.3.1 Part-of-Speech Tagging
Part-of-speech tagging, or simply tagging, is the task of assigning a part of speech, i.e.,
a tag indicating a word category, to each word in a natural language text [135]. This
task provides important information for information-extraction purposes because its
output provides insights into the role of words and their neighbors. For instance, when
extracting process information, it is particularly important to understand if a multi-
purpose term such as “order” corresponds to a verb or a noun in a particular sentence.

Part-of-speech taggers take as input a natural language text, most often a single
sentence, and, as output, return a part-of-speech tag for each word in the text. As
a basis for these taggers, various tagsets are available. These sets of part-of-speech
tags are strongly language-dependent because tags reflect the word classes used by a
language. For English, a seminal tagset is the one consisting of 87 tags used to annotate
the Brown corpus [98]. Popular tagsets that evolved from the Brown tagset are the 61-
tag C5 set [106] and the 45-tag Penn Treebank set [181]. We here reflect in more depth
on the latter, because it is used by the taggers that are part of the NLP tools employed
in this thesis. Table 2.4 provides an overview of this set.

The following shows an example of the output provided by a tagger using the Penn
Treebank tagset for the sentence “An order can arrive at the department.”:

An/DT order/NN can/MD arrive/VB at/IN the/DT department/NN ./.

It is straightforward for human readers to interpret this sentence and provide the

28 2.3. NATURAL LANGUAGE PROCESSING

Table 2.4: Overview of the Penn Treebank tagset (from [135, p.131])

Tag Description Example Tag Description Example

CC coord. conjunction and, or RB adverb extremely
CD cardinal number one, two RBR adverb, comparative never
DT determiner a, the RBS adverb, superlative fastest
EX existential there there RP particle up, off

FW foreign word noire SYM symbol +, %
IN preposition or sub-

conjunction
of, in TO “to” to

JJ adjective small UH interjection oops, oh
JJR adject., comparative smaller VB verb, base form fly
JJS adject., superlative smallest VBD verb, past tense flew
LS list item marker 1, one VBG verb, gerund flying
MD modal can, could VBN verb, past participle flown
NN noun, singular or

mass
dog VBP verb, non-3sg pres fly

NNS noun, plural dogs VBZ verb, 3sg pres flies
NNP proper noun, sing. London WDT wh-determiner which, that
NNPS proper noun, plural Azores WP wh-pronoun who, what
PDT predeterminer both, lot of WP$ possessive wh- whose
POS possessive ending ’s WRB wh-adverb where, how
PRP personal pronoun he, she

appropriate tags. However, even for such a simple sentence, automatically assigning a
tag to each word is not trivial. This problem occurs because certain words in the sen-
tence have multiple usages and meanings, which are associated with different parts-of-
speech. This problem is referred to as ambiguity [135]. For example, “order” can refer
to a noun (i.e., an order from a customer), but also to a verb (i.e., to order something).
This means that “order” can have multiple associated tags: NN when it is used as a
noun and VB or VBP for a verb. Similar problem occur for the term “can”, which may
be a noun, a verb, or a modal verb. Such tag ambiguity is highly common. A study
by DeRose [77] found that over 40% of the words (or tokens) in the Brown corpus
could be associated with multiple possible tags. The challenge of (automated) tagging
is to resolve these ambiguities through disambiguation. Although each tagging algo-
rithm addresses this challenge in its own manner, most approaches can be categorized
as either rule-based or stochastic, or as a combination of the two [135, p.135].

Rule-based tagging algorithms use large collections of manually established rules
to disambiguate among possible tags for words in a sentence. Rule-based approaches
(cf. [115, 138, 141]) typically use a two-stage architecture. The first stage employs a
dictionary to assign a list of potential parts-of-speech to each word, as illustrated in
Table 2.5. The second stage uses the potential tags as input to a database of disam-
biguation rules. These rules eliminate possibilities until a single tag can be assigned
to each word. For instance, a rule can be used to specify that an ambiguous word is a
noun rather than a verb if it follows a determiner [135, p.135]. For example, “order”

CHAPTER 2. BACKGROUND 29

Table 2.5: Possible tags for an exemplary sentence, with correct tags in bold

Word Possible Tags Word Possible Tags

An DT at IN
order NN, VB, VBP the DT
can NN, VB, VBP, MD department NN
arrive VB, VBP

is tagged with NN when it precedes a determiner such as “an”, i.e., an/DT order/NN.
The interested reader is referred to [138] for detailed insights into modern rule-based
approaches.

Stochastic taggers disambiguate among potential tags by using an annotated train-
ing corpus to determine the probability of a given word having a given tag in a given
context [135, p.135]. An important conceptual difference to rule-based taggers is that
stochastic taggers learn methods for disambiguation, rather than depend on manually
established rules. For example, given a tagged corpus, a stochastic parser can infer that
the term “order” has a high (or possibly even 1.0) probability of receiving a NN tag
when it appears directly after a determinant (DT) or an adjective (JJ). The parser will
learn this, because it can count the number of times that such a sequence occurs. The
earliest stochastic tagger was defined by Bahl and Mercer [36]. Several stochastic ap-
proaches followed up on this in the next decades (cf. [65, 69, 77]). A widely employed
algorithm for stochastic tagging is the Hidden Markov Model (HMM) [196]. HMMs
use Bayesian inference to determine the most probable sequence of tags for the words
in a sentence.

Compared to rule-based taggers, HMM-based taggers have the great advantage that
they assign tags by considering an entire sentence, rather than just looking at a word
and its neighbors in isolation.

Both rule-based and stochastic tagging approaches have their own merits and down-
sides. A clear downside of rule-based taggers is that the construction and maintenance
of a hand-crafted rule set is a highly time-consuming and labor-intensive task [136].
Furthermore, these approaches do not consider words in the context of an entire sen-
tence, which can be necessary in certain case. Compared to rule-based taggers, HMM-
based taggers have the great advantage that they assign tags by considering an entire
sentence, rather than just looking at a word and its neighbors in isolation. However,
a downside of stochastic taggers is that they require a large amount of training data
to achieve high levels of accuracy. Furthermore, these approaches do not use any
prior linguistic knowledge that might improve their accuracy. Recognizing these dif-
ferences, several hybrid tagging approaches have been developed that combine aspects
of rule-based and stochastic tagging. For example, works by Brill [53] and Brants [51]
combine rule-based linguistic knowledge with stochastic methods that support context-
dependent disambiguation.

In this thesis, we employ taggers, specifically HMMs, as part of our approach PPI-
transformation approach described in Chapter 6.

30 2.3. NATURAL LANGUAGE PROCESSING

2.3.2 Sentence Parsing
Natural language parsing, or simply parsing, is the task of assigning a grammatical
structure to an input string. The difference to tagging is that parsing primarily focuses
on the relations that exist among words, whereas tagging focuses on the role of individ-
ual words. A so-called parser takes as input a natural language text, most commonly
a single sentence, and as output provides a structured representation of the grammat-
ical relations for the words within this sentence. In this section we describe parsing
according to two such representations: parse trees and dependency grammars.

Parse Trees

Parse trees are a commonly employed means to represent the grammatical structure
of a sentence. The use of a tree to represent grammatical structure is based on the
notion of constituency. Constituency states that groups of words can behave as a single
unit or phrase, i.e., a constituent [135, p.385]. For instance, noun phrases can often be
regarded as single units from a grammatical viewpoint. In these cases, it does not matter
if a noun phrase consists of a single word, such as “they”, or of a larger group of words,
such as “the parts required for a customized bike”; in both cases, the grammatical
relation of the noun phrase to surroundings words remains the same. For instance, for
both noun phrases, a verb has to follow using the third person-plural form, e.g., “they
arrive” and “the parts required for a customized bike arrive.” A parse tree captures
constituents in a hierarchical manner, such as visualized in Figure 2.6.

order A

NP VP

S

DT NN

can

MD VP

VB PP

arrive IN

department

NP

NN MD

the

at

Figure 2.6: Example of a parse tree.

The way in which a parse tree can be structured is defined by so-called produc-
tion rules. The most commonly used mathematical foundation for this purpose is the
Context-Free Grammar (CFG), as originally formalized by Backus [34] and Chom-
sky [64]. A production rule in a CFG expresses the way in which the symbols of a
language can be grouped and ordered together. For example, the following rule ex-

CHAPTER 2. BACKGROUND 31

presses that a sentence can consist of a noun phrase (NP) followed by a verb phrase
(VP):

S → NP VP

In turn, the following rules specify that a noun phrase can be composed of either a
pronoun (e.g., “he” or “they”), a proper-noun (e.g., a name), or of a determiner (Det)
followed by a Nominal, where a Nominal refers to a constituency of one or more Nouns:

NP→ Det Nominal

NP→ Proper-Noun

NP→ Noun | NominalNoun

The goal of parsing is to automatically identify the most likely parse tree for a
given sentence. This task can be viewed as a search through the space of possible parse
trees to find the correct grammatical structure. Similar to part-of-speech tagging, it is
important to disambiguate among the different meanings or different grammatical roles
that words can have. In order to resolve these ambiguities, many parsers are based
on probabilistic models of syntax, such as the Probabilistic Context-Free Grammar
(PCFG) [127, p.237]. These models extend regular CFGs with information on the
likelihood with which certain rules occur. As a basis for the parsing task, two sets of
constraints guide the search process: one set contains the rules of the PCFG and the
other is based on the input sentence. Both of these sets pose constraints on the final
output of the parser. For example, constraints based on the input sentence define the
leaves of the parse tree to be constructed. These two sets of constraints give rise to two
search strategies: top-down and bottom-up search [88]. Top-down parsers search for a
parse tree by trying to build from the root node S down to the leaves. These parsers
thus start from the grammatical constraints of the CFG. By contrast, bottom-up parsers
search for a parse tree by building up from the words of the input sentence [118, 183].
We refer the interested reader to e.g., [135, p.428] for a detailed explanation of both
search strategies.

In this thesis, we employ parsing techniques in the approaches presented in Chap-
ters 3 and 5. There, we use parse trees to extract phrases that correspond to relevant
process concepts from textual process descriptions. For this task, we employ the PCFG
parser included in the Stanford Parser [140].

Dependency Grammars

Dependency grammars provide an alternative means to represent the grammatical struc-
ture of sentences. These grammars capture the grammatical relationships among the
words in a sentence using dependency relations. A typed dependency relation describes
a relation of a certain type that exists between two words. For example, the relation
dobj(receive, goods) denotes the direct object of a verb, i.e., “goods” is the object of the
verb “receive”. A commonly employed dependency grammar is defined by Marneffe et
al. [74]; the dependencies in this grammar are referred to as the Stanford Dependencies.
Table 2.6 presents some of the most common dependency relations in this grammar.

32 2.3. NATURAL LANGUAGE PROCESSING

Table 2.6: Exemplary Stanford dependencies (from [74])

Dependency Description Example

nsubj Nominal subject nsubj(arrive, order)
dobj Direct object dobj(receive, goods)
det Determiner det(the, department)
amod Adjectival modifier amod(order, new)
nmod Nominal modifier nmod(arrive, company)
case Case-marking case(arrive, at)

To obtain the grammatical dependencies for a sentence, it is possible to exploit the
close relation that exists between the dependencies and the structure of parse trees.
Due to this relation, Stanford dependencies can be automatically derived from a parse
tree [73,289]. As such, developments in parsing algorithms can be utilized to generate
grammatical dependencies with high accuracy. Alternatively, dependency parsers ex-
ist that directly compute grammatical dependencies from a sentence [170, 260]. While
dependency parsers for English are less accurate than methods that derive dependency
relations from parse trees, their application can be beneficial for other languages [73].
In particular, dependency parsers can handle languages with relatively free word order-
ing, such as Czech. In these cases, a phrase-structure grammar requires an abundance
of rules to capture all word orders, whereas the use of grammatical dependencies avoids
this problem [135, p.415].

In this thesis, we use grammatical dependencies in the approaches presented in
Chapters 3 and 5. We use dependencies next to parse trees, because dependencies
are more convenient for the extraction of word-pairs, such as verbs and their subjects.
For this purpose, we use the Stanford Dependencies implementation provided by the
Stanford Parser [140].

2.3.3 Reference Resolution
Reference resolution is the task of determining what entities are referred to by linguistic
expressions [135, p.695]. We illustrate the importance of references in natural language
texts by considering the following passage:

“John von Neumann was one of the founding fathers of computing. The Hungarian-
born mathematician invented the merge sort algorithm in 1945. He also made major
contributions to the fields of mathematics, physics, economics, and statistics.”

To properly interpret this passage, it is paramount to recognize that all three under-
lined phrases refer to same entity: John von Neumann. Reference resolution is the task
that aims to achieve this. Here, we discuss two cases of this task: anaphora resolution
and coreference resolution.

Anaphora resolution is the task of finding the antecedent of a single pronoun, e.g.,
he or it. For example, identifying that “he” refers to John von Neumann. Anaphora

CHAPTER 2. BACKGROUND 33

resolution approaches take as input a natural language text, often comprising more
than one sentence, and as output return the most likely antecedent for each pronoun
in the text. A variety of approaches exist for this purpose, such as the seminal Hobbs
algorithm [125], and more advanced techniques that followed up on this [107, 160].
Common among these approaches is that they check the agreement of certain features
between the pronoun and potential antecedents. For instance, an important feature is
the numerical agreement between pronoun and a candidate. A singular pronoun, e.g.,
“he”, will not be used to refer to a plural entity such as “managers”. Other typical
features are the textual distance between pronoun and antecedent, and grammatical
roles [135, p.701]. By analyzing a set of features, anaphora resolution approaches aim
to identify the most likely candidate for an anaphoric reference.

Coreference resolution is the task of finding expressions in a text that refer to the
same entity, i.e., finding expressions that corefer. This task encompasses the subtask
of anaphora resolution. A set of coreferring expressions is called a coreference chain.
For instance, the set {“John von Neumann”, “The Hungarian-born mathematician”,
“he”} forms a single chain in the aforementioned passage. Coreference resolution
presents a highly complex challenge, for which numerous techniques have been de-
veloped. These techniques employ machine learning methods, such as HMMs [257]
and decision trees [185], but also exploit external knowledge sources, such as encyclo-
pedic entries and dedicated corpora [217,268]. Despite great advancements in the used
techniques, the accuracy of resolution approaches still strongly depends on the context
and on the availability of relevant information in corpora [220].

Reference resolution plays an important role in the approaches that focus on the
analysis of textual process descriptions, Chapters 3 and 5. These texts typically con-
tain numerous coreferences that must be resolved to properly understand the relations
between described process steps.

2.3.4 Natural Language Ambiguity
Ambiguity is a pervasive problem in natural language comprehension [231]. As a re-
sult of this, the challenge that most NLP tasks face can be viewed as the need to re-
solve ambiguity, so-called disambiguitation [135, p.4]. In fact, disambiguation plays
an important role in all of the previously considered NLP tasks: tagging, parsing, and
reference resolution. In many cases, NLP techniques can successfully resolve ambigu-
ity, especially when it occurs at the word-level. For example, given the sentence “An
order is received,” disambiguation techniques used in both taggers and parsers will
correctly identify that “order” represents a noun rather than a verb in this sentence.
Disambiguation can be highly challenging, especially in the context of coreference
resolution. However, it is important to differentiate between ambiguity that can be
theoretically resolved, i.e., given sufficiently advanced techniques, and true ambiguity
that cannot be resolved without further contextual information, neither by automated
approaches nor by humans.

To illustrate true ambiguity, consider the sentence “The boy saw a man on the hill
with a telescope.” This sentence can have numerous plausible interpretations. These
interpretations vary, among others, on who is on the hill (“the boy” or “a man”) and
on the possessor or the location of the telescope (“I”, “a man”, or it is “on the hill”).

34 2.3. NATURAL LANGUAGE PROCESSING

For example, the boy can be using a telescope to see the man who is standing on the
hill or the boy can be standing on the hill and see a man who has a telescope. Without
further contextual knowledge, it is not possible to disambiguate among these different
interpretations As a result, NLP techniques typically return what they consider to be
the most likely interpretation, but there is no guarantee that this interpretation captures
the correct meaning of the sentence.

Natural language ambiguity plays an important role in this thesis. As described in
the previous section, the resolution of references, a key example of disambiguation, is
necessary for the interpretation of textual process descriptions. Furthermore, in Chap-
ter 5 we pay particular attention to the impact that true ambiguity has on the analysis
of process descriptions from a compliance-checking perspective.

2.3.5 Applications in Business Process Management

A variety of works exist that apply NLP in the context of BPM. To provide an overview,
we here subdivide the discussion into research that focuses on text inside process mod-
els and research that analyzes natural language outside of process models, captured in
external text documents.

Approaches that analyze language inside process models focus on the labels of
process model elements, mostly activity and event labels. Such techniques serve vari-
ous purposes. A number of approaches aim to improve the quality of process models.
These approaches analyze the quality and consistency of activity labels in a model, for
example by detecting and/or correcting inconsistent use of terminology [148] or viola-
tions of labeling conventions [45,164,271]. Others aim to improve modeling quality by
detecting common modeling errors [120] or ambiguously labeled activities [213, 214].
Some approaches add information to a process model by annotating model elements
with semantic or ontological information [49, 97, 165]. Lastly, there are approaches
that distill information by analyzing the labels of activities in a process model repos-
itory. Mostly, such techniques focus on the detection of service candidates, which
correspond to process patterns that occur repeatedly throughout process models in a
collection [100, 142, 168, 207].

Approaches that analyze process-related text documents primarily focus on the elic-
itation of process models from natural language texts. Several approaches have been
developed for this purpose in recent years. These approaches elicit process models
from different kinds of texts. Some focus on specific text types, such as the genera-
tion of models from use cases [253], group stories [111], or methodological descrip-
tions [90], while others take general textual process descriptions as input [99, 108].
These techniques combine extensive use of NLP tools with specifically tailored anal-
ysis techniques, in order to extract process-related information from natural language
texts. Despite the use of state-of-the-art NLP tools, the existing approaches have been
found to produce inaccurate models, which require extensive manual revision [250].

The research presented in this thesis builds on several of the aforementioned ap-
proaches. Most prominently, in Chapter 5 we build on existing work on the generation
of process models from natural language texts.

CHAPTER 2. BACKGROUND 35

2.4 Matching
The automated techniques presented in this thesis focus on the comparison and integra-
tion of process information contained in different artifacts. These techniques share a
reliance on the identification of correspondences between process concepts contained
in the different artifacts. For example, correspondences between parts of a text and
components of a process model are required in order to determine if a textual pro-
cess description describes a process in the same way as a process model. In recent
years, a plethora of so-called matching techniques have been developed that set out to
automatically identify such inter-artifact relations [109]. Matching techniques are de-
veloped and applied in various fields, including schema matching and ontology align-
ment. Schema matching takes two database schemas as input and produces a mapping
between elements of the schemas that correspond semantically to each other [224].
These mappings, also referred to as alignments, play a central role in applications,
such as schema integration [44, 206], data warehousing [47], and semantic query pro-
cessing [272]. Ontology alignment concerns the identification of correspondences be-
tween the elements of two ontologies [203]. Ontologies are abstract models that ex-
plicitly define concepts, their properties, and their inter-relations for a specific domain
(cf. [119, 264]). Uses of ontology alignments include instance translation [68], on-
tology extension [85], and ontology merging [204]. The usefulness of matching has
also been recognized in the context of BPM, most prominently in the form of process
model matching techniques, which establish alignments between activities from dif-
ferent process models. These are, among others, used to detect differences between
models [156], for the harmonization of process model variants [157], process query-
ing [131], and to automatically propagate process changes [280]. Other techniques
focus on the alignment of other process-information artifacts, such as techniques that
align event classes from event logs to process model activities [37, 251].

In the remainder of this section, we elaborate on the matching task and matching
techniques. We first illustrate the goal of matching in Section 2.4.1, by considering
a process model matching scenario. Then, Section 2.4.2 provides definitions relevant
to the matching task. In Section 2.4.3, we discuss measures to compute textual sim-
ilarity, which represent a core component of nearly all matching techniques. Lastly,
Section 2.4.4 presents a reflection on existing techniques for matching in a BPM con-
text.

2.4.1 Matching Example
In this section, we discuss the goal of matching based on a process model matching
scenario. Given two process models with their respective sets of activities A1 and A2,
the goal of process model matching is to identify the activities (or sets of activities)
from A1 and A2 that represent similar behavior. We illustrate this using the process
models depicted in Figure 2.7.

This figure depicts two process models, both describing admission processes of
universities, and their highlighted correspondences. Some of the correspondences in
Figure 2.7 are evident. For example, both process models contain an activity with the
label “Send decision letter,” which shows that these activities represent similar process

36 2.4. MATCHING

Receive
application

U
ni

ve
rs

ity
 1

U

ni
ve

rs
ity

 2

Check
documents

Assess
applicant

Invite for
interview

Send
decision letter

Receive
form

Check if
form is

complete

Check if
bachelor is
sufficient

Send
decision letter

Invite for
aptitude test

Figure 2.7: Two process models and their correspondences (adapted from [155])

steps. The correspondence between “Receive application” and “Receive form” is also
clear, even though their activity labels are not completely identical. However, other cor-
respondences are less straightforward. The activity “Check documents” in the model
of University 1 corresponds to two activities in the other model, “Check if form is com-
plete” and “Check if bachelor is sufficient”. This example illustrates that the cardinality
of correspondences does not have to be one-to-one, but can also be one-to-many and
even many-to-many. In this particular case, the one-to-many relation illustrates that the
“Check documents” activity encompasses the “Check if form is complete” and “Check
if bachelor is sufficient” activities from the second model.

Furthermore, upon closer inspection, it becomes clear that these correspondences
are highly specific to the context in which they appear, i.e., in the context of university
admission processes. For example, in other contexts, the correspondences between
“Check documents”, on the one hand, and “Check if form is complete” and “Check if
bachelor is sufficient”, on the other, are likely to not exist.

2.4.2 The Matching Task

The goal of matching is to automatically identify correspondences between concepts in
two informational artifacts. We formally define this matching task based upon notions
from [103]. Let C1 and C2 be two sets of concepts to be aligned, e.g., two sets of pro-
cess model activities for process model matching scenarios. A matching task creates
an n × n′ similarity matrix M(C1,C2) over C1 × C2. Each Mi, j in the matrix repre-
sents a degree of similarity, usually a real number in [0, 1], between the i-th concept
in C1 and the j-th concept in C2. To perform the matching task, matching techniques
typically perform several sequential steps, in which different classes of matchers are ap-
plied. An important distinction exists between so-called First-Line Matchers (FLMs)
and Second-Line Matchers (SLMs) [104].

CHAPTER 2. BACKGROUND 37

A FLM establishes a similarity matrix by analyzing the concepts contained in the
artifacts C1 and C2. For any pair of concepts c1 ∈ C1 and c2 ∈ C2, an FLM produces a
score [0,1] that quantifies the similarity between c1 and c2 by considering certain sim-
ilarity characteristics. Most FLMs focus on the labels associated with c1 and c2, such
as the activity labels in Figure 2.7. In the context of processes, other useful input for
FLMs include behavioral and structural relations between process concepts. In con-
trast to FLMs, SLMs ignore any information contained in the informational artifacts.
Instead, they establish a similarity matrix from an input of one or more other similarity
matrices. Two commonly used categories of SLMs are ensemble matchers and deci-
sion makers. Ensemble matchers combine the values of multiple similarity matrices
into one. For example, an ensemble matcher can be used to combine the results of an
FLM that analyzes labels and another FLM that considers behavioral relations between
process concepts. Decision makers are SLMs that take a non-binary similarity matrix
(with values in the range [0,1]), as created by a FLM or an ensemble matcher, and
convert it into a binary matrix (with values in {0, 1}). For example, a decision maker
can be used to select only those correspondences with a similarity score above a certain
threshold. The decision maker turns these scores into 1, whereas correspondences with
a lower similarity score receive a 0. Decision makers are typically used to provide the
final output of the matching task, i.e., to select the correspondences that are included
in the alignment provide by the matching technique.

In the next section, we discuss measures used by FLMs to quantify similarity be-
tween text fragments, e.g., between activity labels. We specifically highlight these
measures because they represent a crucial component of most matching techniques
and because we employ them in the matching techniques presented in this thesis.

2.4.3 Similarity Measures

Textual contents are an important source of information to determine the similarity
between concepts in a matching task. For example, for process model matching, simi-
larity of activity labels is a vital component of most matching techniques. Labels that
are syntactically similar (e.g., “receive application”, “receive online application”) or
semantically similar (e.g., “deliver products”, “send order”) are good indicators that
their corresponding activities describe similar process behavior. A plethora of similar-
ity measures exist that can be used to compute the degree of similarity between two text
fragments. Below, we first discuss certain normalization steps that can be applied on
text fragments in order to improve the usefulness of such measures. Then, following
Algergawy et al. [28] we separately consider the streams of syntactic and semantic sim-
ilarity measures. Without a loss of generality, we illustrate the concepts and measures
throughout this section with example fragments in the form of process model activity
labels.

Normalization

In order to make text fragments more comparable, they are typically first normalized.
This normalization phase can consist of several steps, including:

38 2.4. MATCHING

• Tokenization: A fragment is split into a set of tokens, each corresponding to a
single word or term. Typically, tokenization can be performed by considering
whitespace characters contained in the texts, e.g., “deliver goods”→ {“deliver”,
“goods”}. However, in other cases different delimiters may be required for tok-
enization, such as punctuation or uppercase characters, e.g., “deliverGoods” →
{“deliver”, “goods”}.
• Expansion: Abbreviations and acronyms are expanded, e.g., “PO”→{“purchase”,

“order”}. Various approaches exist that address this task, for instance by ex-
tracting information on abbreviations from corpora of textual documents, see
e.g., [200, 293].
• Stemming: Suffixes from words are removed in order to transform differing terms

to the same form, e.g., connected, connecting, and connection are all stemmed to
the term connect. The most commonly applied stemming algorithm is Porter’s
algorithm [219].
• Lemmatization: All terms are transformed into their grammatical base forms.

Lemmatization can be performed using standard NLP tools, such as the Stanford
CoreNLP [180]. An important advantage compared to stemming is that lemma-
tization can handle more complex transformations, such as irregular verbs. For
instance, sing, sang, and sung are all mapped to the common lemma sing. A
downside is that lemmatization is taxonomy-based; it can only be applied to
terms that are included in a taxonomy or dictionary. By contrast, stemming is
rule-based, which means that it can also be applied to unknown words.
• Stop-word removal: Common words that are of little value when considering

textual similarity are removed from consideration [179]. Typical words to be
removed are closed class terms, such as prepositions (“the”, “an”) and conjunc-
tions (“and”, “or”).

As a result of the normalization phase, activity labels are split into sets of tokens
from which information that can obscure the effective computation of similarity has
been removed. For example, by combining normalization steps, given two activity la-
bels “Receive the purchase order” and “PO receipt”, we can obtain equal sets of tokens
for each label: {“receive”, “purchase”, “order”}. Due to this normalization, any simi-
larity measure will now recognize the similarity between these activities, whereas this
might not have been the case for the non-normalized labels. Note that the discussed
normalization steps abstract from certain details that might be relevant to the compu-
tation of similarity in particular use cases. For instance, tokenization abstracts from
the order in which terms occur in a label by producing a set of tokens. While this ab-
straction is valuable in most use cases, such as the previous example, it is imaginable
that term order is relevant in other alignment scenarios. Similarly, certain stop-words
that are generally removed in normalization steps (such as “and” and“or”) might be
relevant to the computation of similarity in specific cases. Therefore, it is important to
consider which normalization steps are suitable to the specific use case for which they
are applied.

Given two sets of tokens ω1 and ω2 resulting from a normalization phase, the next
step to compute label similarity is to determine the similarity between individual terms,
i.e., sim(t1, t2) for t1 ∈ ω1 and t2 ∈ ω2. For this purpose, both syntactic and semantic
similarity measures can be used.

CHAPTER 2. BACKGROUND 39

Syntactic Similarity Measures

Syntactic similarity measures compute the degree of similarity between two tokens by
comparing their character sequences. A plethora of measures have been developed
for this purpose, see e.g., Cohen et al. [66] and Navarro [202] for overviews. Two of
the most commonly employed measures are the Levenshtein distance and the N-gram
distance:

• Levenshtein distance: Given two tokens t1 and t2, the Levenshtein distance, also
referred to as the edit distance, is given by the minimum number of single-
character operations (i.e., insertion, deletion, and substitution of a character)
required to transform t1 into t2 [291]. The following equation formalizes this:

simedit(t1, t2) = 1 −
editDistance(t1, t2)

max(|t1|, |t2|)
(2.1)

In Equation 2.1, editDistance(t1, t2) denotes the minimum cost of edit operations
necessary for the transformation between t1 and t2. This computation can include
varying costs for the different operations.

• N-gram distance: An n-gram is a slice of n characters of a longer string [70].
Typical values for n are 2, where the slices are referred to as di-grams, and 3,
referred to as tri-grams. For example, the term “order” consists of the following
bi-grams: { o, or, rd, de, er, r }. The n-gram distance between two to-
kens t1 and t2 quantifies the fraction of overlapping n-grams. The main benefit of
n-gram-based similarity is that it is resistant to a wide variety of textual errors.
This follows because the decomposition of the string means that any errors (e.g.,
typographical errors) affect only a limited number of the decomposed parts [57].
The n-gram distance between two tokens t1 and t2 is defined as:

simn-gram(t1, t2) =
2 × |n-gram(t1) ∩ n-gram(t2)|
|n-gram(t1)| + |n-gram(t2)|

(2.2)

Syntactic similarity measures have been widely employed in various matching con-
texts. A clear advantage of syntactic measures such as the Levenshtein distance is that
they can be applied without any external sources. This makes them language- and
domain-independent [70]. Furthermore, they are able to recognize similarity in spite
of typographical errors [57]. Table 2.7 illustrates this. The syntactic similarity (simedit)
between agreement and argeement is high, despite the obvious error in the latter term.
However, syntactic similarity measures also have their limitations. In particular, syn-
tactic measures may assign high similar scores to terms with a highly dissimilar mean-
ing. For example, the Levenshtein distance between “contact” and “contract” is min-
imal, resulting in a high similarity score. Such a similarity assessment can produce
problematic results in process model matching, where the goal is to identify activities
that refer to a semantically similar process step. Also, Table 2.7 shows that syntactic
similarity measures cannot identify words with similar meanings, such as contract and
agreement. Semantic similarity measures aim to overcome these issues.

40 2.4. MATCHING

Table 2.7: Comparison of syntactic and semantic similarity scores

t1 t2 simedit simlin

agreement argeement 0.88 n/a
contract contact 0.88 0.10
contract agreement 0.11 0.96

Semantic Similarity Measures

Semantic similarity measures consider word similarity based on the meaning of words,
rather than their syntactic contents. For example, the words “contract” and “agree-
ment” have a high semantic similarity, because they both describe an exchange of
promises. Semantic similarity measures are based on NLP techniques and typically
strongly rely on the use of external sources, such as text corpora or lexicons [28].
Following Agirre et al. [26], we distinguish two major streams of semantic measures:
WordNet-based measures and distributional similarity measures.

WordNet-based measures, also referred to as taxonomy-based, consider similarity
from the perspective of the semantic relations that can exist between words. For these
measures, the most important relations to consider are synonymy, homonymy, hyper-
nomy, and meronomy. Table 2.8 provides an overview of these. For example, the
synonymy relation indicates that two words have the same meaning, whereas the hy-
ponomy relation indicates that one word is more specific than another. Each semantic
relation can be derived from a taxonomy of terms. The most commonly employed tax-
onomy for this purpose is based on WordNet. WordNet is a lexical database for the En-
glish language that organizes words into sets of synonyms, so-called synsets [194,195].
From the relations that exist between these synsets, a taxonomy can be established that
captures the semantic relations depicted in Table 2.8. The Lin similarity represents an
implementation of a WordNet-based similarity measure:

Table 2.8: Overview of semantic word relations

Relation Description Example

Synonymy Words have the same or similar mean-
ing

bill & invoice

Homonymy A word with multiple different mean-
ings

application → computer program
or written request

Hypernomy Words have a hierarchical (type-of) re-
lation between their meanings

vehicle & car

Meronymy Words have a part-of relation between
their meanings

wheel & car

• Lin similarity: Lin [169] proposes a theoretical notion of semantic similarity
based on the informational content of the common ancestor of two terms in a

CHAPTER 2. BACKGROUND 41

taxonomy. Lin similarity operationalizes this similarity theorem as follows:

simLin(t1, t2) =
2 × log P(anc(t1, t2))
log P(t1) + log P(t2)

(2.3)

In Equation 2.3, anc(t1, t2) represents the synset that is the closest ancestor of t1
and t2 in the taxonomy and log P(t) denotes the occurrence probability of words
in the synset containing token t. In this way, Lin similarity considers the meaning
of terms, as well as their commonality.

Distributional similarity measures are based on the statistical analysis of co-occurren-
ces of terms in large text collections. Specifically, given two terms t1 and t2, these
measures consider how similar the words that surround t1 and t2 are to each other.
The underlying intuition is that words with a similar meaning occur in similar con-
texts [193]. The great advantage of second order measures is that they do not rely
on manually established lexical resources such as WordNet, which are unavailable for
numerous domains and languages [145]. Due to this independence, second order simi-
larity measures can be trained to deal with context-specific terms [128]. This is particu-
larly relevant in the business settings where process model matching is mostly applied,
because processes in these settings often use domain-specific terms.

Several methods provide distributional similarity measures, such as methods pro-
posed by Landauer et al. [159], commonly known as Latent Semantic Analysis, Grefen-
stette [116], Dorow and Widdows [84], and Rapp [226]. Here, we describe a similarity
measure proposed by Kolb [145, 146] in more detail:

• DISCO: The DISCO similarity measure distinguishes itself from other distribu-
tional similarity measures because it takes the distance between a word and its
neighboring words into account. In particular, it computes the distribution based
on weighted word vectors, which take into account the co-occurrence of words,
as well as their relative position. Intuitively, this measure finds the words that
share a maximum number of common co-occurrences. For brevity, we here omit
the depiction of the extensive equations required for this computation.

In this thesis, we employ both Lin and Disco similarity to compute the semantic
similarity between process concepts. Furthermore, we combine this with the use of the
Levenshtein distance for terms that are not recognized by our semantic measures, e.g.,
agreement—argeement.

Token-Set Similarity

The previously considered syntactic and semantic similarity measures can be used to
compute a similarity score between individual tokens. Several methods exist that use
these token-similarity scores to compute a degree of similarity between two sets of
tokens ω1 and ω2. One method is to take the average of the highest similarity score for
each token in one set against all tokens in the other [176], as given by the following
equation:

42 2.4. MATCHING

simavg(ω1, ω2) =

∑
t1∈ω1

[max
t2∈ω2

sim(t1, t2)] +
∑

t2∈ω2

[max
t1∈ω1

sim(t1, t2)]

|ω1| + |ω2|
(2.4)

When determining token-set similarity, it can also be useful to take the specificity
of terms into account, aside from just the similarity of terms. Term specificity refers
to the discriminatory power of terms in a given context. The underlying intuition is
that terms that occur often in a particular context (e.g., in a particular business pro-
cess) are less useful for the identification of similarity than relatively rare terms. To
illustrate this, consider an activity labeled “deliver order” in an order handling process.
The term order is most likely to occur in many activities in this process, which makes
it hardly helpful when determining the similarity between activities. By contrast, the
term deliver is likely more rare in this context, which make it a much better similarity
indicator. A widely employed metric to compute term specificity is the Inverse Docu-
ment Frequency (IDF), which assigns a low weight to common terms and a high weight
to infrequently occurring terms. The IDF for a token t in a collection of process model
activities A is given by Equation 2.5. In this equation, we use l(a) to refer to the label
of activity a.

id f (t, A) = log
|A|

|a ∈ A : t ∈ l(a)|
(2.5)

Mihalcea et al. [192] propose a measure that combines similarity scores with term
specificity, given by Equation 2.6.

simmih(ω1, ω2) =

∑
t∈ω1

[max
t′∈ω2

sim(t, t′)] × id f (t)

2 ×
∑

t∈ω1

id f (t)
+

∑
t∈ω2

[max
t′∈ω1

sim(t, t′)] × id f (t)

2 ×
∑

t∈ω2

id f (t)
(2.6)

The consideration of term specificity is highly important in process contexts, where
certain terms with little discriminatory power are often repeated throughout the descrip-
tion of model of a process. Therefore, we employ the measure provided by Equation 2.6
for similarity computations for the computation of alignment throughout this thesis.

2.4.4 Matching in Business Process Management
Matching has received considerable attention in the context of BPM, resulting in the
development of a plethora of matching techniques. The vast majority of these are
process model matching techniques.

Nearly all process model matching techniques include one or more FLMs that fo-
cus on label similarity. A considerable number consider label similarity purely from
a syntactic perspective, cf. [79, 172, 284]. These approaches typically use distance-
based measures like the Levenshtein distance. Other matching techniques focus on
the semantic similarity between activity labels, such as Lin similarity [167, 215, 249].
Although label similarity measures represent important components to most matching
techniques, the dependencies that exist between process model activities also provide

CHAPTER 2. BACKGROUND 43

useful insights for the matching task [133]. Therefore, behavioral or structural char-
acteristics are often also taken into account by matchers. The underlying idea of such
considerations is that activities which share structural properties are likely to be similar.
For instance, if two activities both occur at the start of their respective process models,
they are more likely to be similar than if one activity occurs at the start and one at
the end of the process. Process model matching techniques such as [79, 133, 171] take
such properties into account. Typically, these techniques combine structural similarity
measures with measures for label similarity in order to improve the produced matching
quality.

The importance of process model matching has been emphasized through the Pro-
cess Model Matching Contests held in 2013 and 2015 [32, 58]. In these contests, vari-
ous matching techniques were applied on the same data collections in order to compare
their performance. The results show that the performance of matching techniques can
be improved. For certain data collections, the best performing techniques manage to
identify less than half of the actual correspondences correctly. Furthermore, it is inter-
esting to observe that the performance of matchers varies greatly across different data
collections. This indicates that the characteristics of process models have a significant
effect on the performance of different matchers. Weidlich et al. [283] provide means to
quantify such characteristics with the aim to predict the success of matching techniques
on specific matching problems.

Throughout this thesis, we build on insights and techniques of various matching
approaches. In Chapters 3 and 6 we use semantic similarity measures and other match-
ing techniques to establish relations between process model elements and process in-
formation extracted from natural language. Chapter 4 builds on techniques that es-
tablish alignments between event classes of event logs and process model activities.
Finally, Chapter 7 presents a new process model matching technique that establishes
alignments by considering event-log information, rather than information contained in
process models.

3
Comparing Process Models to Textual Process

Descriptions

Organizational stakeholders involved in business processes have different preferences
regarding the representation format used to visualize process information. As consid-
ered in Section 2.1.3, a user’s cognitive style, their experience, and their purpose all
influence the suitability of a particular format. As a result, some stakeholders and ap-
plications scenarios are better served by process information represented in the form of
process models, whereas, in other cases, textual process descriptions are more suitable.
For this reason, organizations have recognized the value of maintaining textual process
descriptions alongside process models [166]. However, as shown in Section 2.1.4, the
usage of two representation formats for the same process also comes with the risk of
having to deal with inconsistencies between them. As a result of such inconsistencies,
users may execute processes based on incorrect information. This can lead to inefficient
process execution [35] as well as compliance issues [31]. Therefore, it is crucial that or-
ganizations keep their process descriptions in sync [124]. However, the effort required
to identify and clear up conflicts for an entire process repository, potentially consisting
of hundreds or even thousands of processes [237], is hardly manageable in a manual
way. Against this background, this chapter introduces an approach that automatically
detects inconsistencies between process models and textual process descriptions. In
this way, the approach supports organizations by reducing the effort required to clear
up any inconsistencies.

In the remainder of this chapter, Section 3.1 illustrates the problem and the chal-
lenges associated with the detection of inconsistencies between model and text. Sec-
tion 3.2 presents our proposed inconsistency-detection approach. Specifically, our ap-
proach identifies two types of inconsistencies related to the control-flow of a process.
First, it identifies process steps that are contained in the model but not in the textual
description, i.e., missing activities. Second, our approach detects cases where a process
model and a textual description describe process steps in a different, conflicting order.
Section 3.3 demonstrates the usefulness of our approach through a quantitative evalua-

45

46 3.1. PROBLEM ILLUSTRATION

tion. The evaluation results show that our approach is indeed able to effectively identify
inconsistencies in a collection of model-text pairs obtained from practice. Section 3.4
provides a reflection on the limitations of our approach and the evaluation. Section 3.5
considers streams of related research. Finally, we summarize the chapter in Section 3.6.

3.1 Problem Illustration
To illustrate the challenges that are associated with the detection of inconsistencies
between textual and model-based process descriptions, consider the model-text pair
shown in Figure 3.1. It includes a textual and a model-based description of a bicy-
cle manufacturing process. The left-hand side provides a textual description of the
process, which comprises eleven sentences. On the right-hand side, a corresponding
model-based description can be seen, expressed using BPMN. The model contains
nine activities, which are depicted using boxes with rounded edges. The diamond
shapes that contain a plus symbol indicate concurrent streams of action; the diamond
shapes containing a cross represent decision points, i.e., choices in the process. Lastly,
the gray shades suggest correspondences between the sentences and the activities of
the process model.

x	

Receive
order

Inform S&E
department

No

Yes

Backorder
part

Reserve
part

Prepare for
assembling

Assemble
bicycle

Available
in-house?

N
o

Ye
s Any part left

unchecked?

Ye
s

No

Select
unchecked

part

Ship bicycle
to customer

Enter details
into ERP
system

Accept
order?

(1) A small company manufactures customized
bicycles.

(2) Whenever the sales department receives an
order, a new process instance is created.

(3) A member of the sales department can then
reject or accept the order for a customized bike.

(4) If the order is accepted, the order details are
entered into the ERP system.

(5) Then, the storehouse and the engineering
department (S&E) are informed.

(6) The storehouse immediately processes the part
list of the order.

(7) If a part is available, it is reserved.

(8) If it is not available, it is back-ordered.

(9) This procedure is repeated for each item on the
part list.

(10) In the meantime, the engineering department
prepares everything for the assembling of the
ordered bicycle.

(11) If the storehouse has successfully reserved or
back-ordered every item of the part list and the
preparation activity has finished, the engineering
department assembles the bicycle.

Figure 3.1: A textual and a model-based description of a bicycle manufacturing process

An in-depth look at the example reveals that many connections between the two
artifacts are evident. For example, there is little doubt that sentence (7) describes the
“reserve part” activity or that sentence (8) describes the “back-order part” activity.
However, there are also clear inconsistencies between the two process representations.
For instance, there is no sentence that relates to the “ship bicycle to customer” activity,
i.e., that activity is missing from the textual description. Likewise, we can observe

CHAPTER 3. COMPARING PROCESS MODELS TO TEXT 47

that sentences (4) and (5) occur in a different order than their corresponding model
activities. In other cases it is less straightforward to decide on the consistency—or
lack thereof—between the representations. For example, sentence (9) indicates that
a certain procedure of the process must be repeated for every part in the order. The
textual description does not indicate that any action is associated with this repetition.
By contrast, the process model does describe an explicit action for this repetition, in
the form of the “select unchecked part” activity. Whether or not sentence (9) actually
describes an action, and thus should be considered an inconsistency, seems to be open
for debate. Nevertheless, it is important to recognize that such ambiguous cases, which
are already difficult to resolve for human readers, pose even greater challenges to an
automated technique.

This problem illustration shows that an appropriate inconsistency-detection tech-
nique must be able to (i) recognize structural as well behavioral process aspects in a
natural language text and (ii) align this information with process model activities. In
the next section, we describe an approach that achieves this by building on NLP and
matching techniques.

3.2 Inconsistency-Detection Approach

Figure 3.2 depicts the main steps of our automated approach to detection inconsisten-
cies between process models and textual descriptions. The approach takes a process
model and an accompanying textual description as inputs. In the first step, the approach
subjects the textual description to a linguistic analysis. This preprocessing step focuses
on the extraction of core process information from the description’s sentences. Next
follows the creation of an alignment between process model activities and the prepro-
cessed sentences. For this alignment task we combine semantic similarity scores with a
consideration of the ordering relations that exist between the process steps in the model
and text. In the third and final step, the approach predicts inconsistencies based on the
established alignments. For this purpose, we introduce predictors that evaluate quality
characteristics of the obtained correspondences. The final result of the approach is a set
of predicted inconsistencies, both at a process level, as well as at a more fine-granular
activity level. Sections 3.2.1 through 3.2.3 describe the individual steps of the approach
in detail.

Textual process
description

Model-based process
description

1. Linguistic
analysis

2. Activity-sentence
alignment

3. Inconsistency
detection

Predicted
inconsistencies

Figure 3.2: Overview of the proposed approach.

48 3.2. INCONSISTENCY-DETECTION APPROACH

3.2.1 Linguistic Analysis

To be able to create an accurate activity-sentence alignment for a model-text pair, we
first subject the textual process description to a linguistic analysis. The goal of this step
is to preprocess the sentences in order to extract the most relevant process information
contained in a sentence. As a result, we exclude details that may negatively affect the
ability of our approach to accurately determine the similarity between a sentence and
an activity. The linguistic-analysis step consists of two parts: (i) anaphora resolution
and (ii) main clause extraction. We illustrate their application on sentence s8 from the
running example: s8 =“If it is not available, it is back-ordered.”

Anaphora Resolution

Anaphoric references, as introduced in Section 2.3.3, represent a considerable problem
when analyzing textual process descriptions. These references are problematic because
they obscure process information that is relevant to the establishment of alignments.
As an example, consider the aforementioned sentence s8 and the “back-order part”
activity, referred to as a5. The sentence and the activity both describe the act of back-
ordering a part. A part thus represents the business object of the action. However,
s8 does not explicitly describe this. The sentence instead uses the pronoun “it” to
refer to the term “part” contained in the previous sentence. The anaphoric reference
thus obscures information that is important to determine the similarity between s8 and
a5, namely that both actions are applied to the same business object. To overcome
this problem, we apply an anaphora-resolution technique that resolves these backward
references.

To resolve anaphoric references, our approach first identifies the objects contained
in a sentence. We identify these objects by considering a number of Stanford Depen-
dencies [74]. These dependencies, which were introduced in Section 2.3.2, denote
grammatical relations between words [74]. Table 3.1 depicts the main dependencies
used for the purpose of anaphora resolution. To identify the main term (i.e., the noun)
of business objects in a sentence, the most important relations to consider are direct
objects and nominal subjects. For instance, in sentence s2, the relation dobj(receives,
order) indicates that “order” is the object being “received”. Nominal subjects sim-
ilarly identify business objects in passive sentences, as seen in sentence s7. There,
nsubj(reserved, part) shows that the object “part” is “reserved”. Since business ob-
jects can comprise multiple terms, e.g., “the part list”, we also take word specifiers
into consideration. Common specifiers include adjectival modifiers (e.g., “small”,
“customized”), possession modifiers (e.g., “customer’s”, “his”), and compounds (e.g.,
“sales department”). By considering these word specifiers, we can also extract com-
plex business objects such as “the customer’s customized bicycle.”

Once the business objects of a sentence have been identified, we check if all objects
in the sentence are anaphoric references. This is the case when all objects identified
in the sentence are pronouns or determiners. For these sentences, we resolve the ref-
erences by replacing the pronouns with the objects from the preceding sentence. For
instance, in sentence s8, we replace the two occurrences of “it” with the business object
of sentence s7: “a part”. As a result, we resolve the anaphoric references and obtain

CHAPTER 3. COMPARING PROCESS MODELS TO TEXT 49

Table 3.1: Main Stanford Dependencies used for anaphora resolution

Purpose Description Example

Object
identification

Direct object dobj(receive, goods)
Nominal subject nsubj(reserved, part)

Word specifiers
Adjectival mod. amod(bicycle, customized)
Possessive mod. poss(bicycle, customer’s)
Compound nn(department, sales)

the following adapted sentence:
s′8 = “If a part is not available, a part is back-ordered.”

Main Clause Extraction

Sentences in a textual description describe actions that are performed in a process,
the process flow, and also provide additional information. To accurately align them to
process model activities, it is important to identify those parts of sentences that specif-
ically relate to actions, while excluding unrelated information from consideration. In
this context, the most problematic cases are sentences where a conditional statement
contains terms similar to those used in activity labels. The dependent clause of sen-
tence s11 provides such an example: “If the storehouse has successfully reserved or
back-ordered every item of the part list and the preparation activity has finished [...]”
This clause contains the same terms as the “reserve part” and “back-order part” ac-
tivities. Still, it is clear that these activities are actually described elsewhere in the
textual description. The conditional statement rather describes the requirement that
these activities must have been previously completed. The inclusion of such terms
in a conditional clause can indicate a strong similarity between sentence s11 and the
“reserve part” and “back-order part” activities, which can reduce the quality of the
generated alignment. Therefore, to mitigate the impact of conditional statements on
the calculation of activity-sentence similarity, we extract the main clauses from such
sentences.

In order to differentiate between conditional statements and main clauses, we use
parse trees generated by the Stanford Parser [140]. Parse trees represent conditional
statements as subordinate clauses, denoted as SBAR, starting with a specific term, such
as e.g., “if ”, “once”, or “in case”. Figure 3.3 illustrates this for the sentence s8. We
omit these subordinate clauses from consideration by extracting the remainder of such
sentences. For instance, for s8 we exclude “If it is not available” and extract the main
clause.

By combining anaphora resolution and main clause extraction, our linguistic anal-
ysis retains the following preprocessed sentence for the example: s′8 = “a part is back-
ordered.” This preprocessed sentence now emphasizes the process information relevant
to the determination of similarity because it includes the proper business object “part”,
rather than the pronoun “it”. Furthermore, we omitted the precondition “If it is not
available”, which is not relevant when determining the similarity between s8 and the

50 3.2. INCONSISTENCY-DETECTION APPROACH

it is not If it is back-ordered available

NP VP

SBAR

S

VP NP IN

S

dependent clause main clause

Figure 3.3: Simplified parse tree for sentence s8.

contents of the activity labels in the process model. Therefore, the preprocessed sen-
tences provide a suitable input for the alignment task, as described in the next section.

3.2.2 Activity-Sentence Alignment
This section describes how we obtain an optimal alignment between the activities of a
process model and the sentences of a textual description. In this context, an alignment
∼ consists of a number of pair-wise correspondences between the activities from a set
A and sentences from a set S . Each correspondence relates a single activity a ∈ A to a
sentence s ∈ S , denoted as a ∼ s.

We here establish an alignment that maximizes the sum of the semantic similarity
scores of its correspondences, while respecting certain ordering constraints imposed by
the order of activities and sentences. Next, we describe the computation of semantic
similarity and the ordering constraints in more detail.

Semantic Similarity

When establishing alignments, it is crucial to determine if a sentence s and an activity
a refer to the same stream of action. To accurately assess this, we have to take the vari-
ability of natural language expressions from the sentences into account [22]. Therefore,
we first normalize the textual contents of a sentence before determining their semantic
similarity.

Normalization. We first perform a number of normalization steps in order to make an
activity label and sentence more comparable. In particular, we perform tokenization,
stop-word removal, and lemmatization, which are described in detail in Section 2.4.3.
Tokenization splits a text or an activity label into a set of tokens, each correspond-
ing to a single term, e.g., “a part is back-ordered” is split into the set {“a”, “part”,
“is”, “back-ordered”}. With stop-word removal we omit determiners, prepositions, and
conjunctions from consideration, because these are of little value when determining
similarity. As a result, we retain the token set: {“part”, “is”, “back-ordered”}. Fi-

CHAPTER 3. COMPARING PROCESS MODELS TO TEXT 51

nally, lemmatization transforms all remaining terms into their grammatical base forms.
For instance, it transforms “is” into “be” and “back-ordered” into “back-order.” In
combination with our linguistic analysis step, our normalization step turns the original
sentence “If it is not available, it is back-ordered”, into the set of tokens ωs = {“part”,
“be”, “back-order”}.

Similarity computation. To quantify the similarity between the token sets that result
from the normalization step, we use the similarity measure proposed by Mihalcea et
al. [192]. This similarity measure combines Lin similarity and IDF, as previously
introduced in Section 2.4.3. The use of Lin similarity allows us to identify semantically
similar terms, such as “part” and “component.” The IDF is used to assign a higher
weight to terms that are relatively rare in the process descriptions, while it assigns a
low weight to common terms. Consider, for instance, the term “part” in the running
example. A brief look at the model and the text reveals that this term occurs in a large
number of sentences and activities and, hence, has only little discriminative power.
By contrast, the term “receive” only occurs in sentence s2 and in activity a1. Thus,
this term is relatively likely to indicate that s2 and a1 describe the same process step,
whereas this is not the case for the occurrence of “part” in, e.g., sentence s6 and the
activity “back-order part”. Equation 3.1 provides the equation used to quantify the
similarity between the token sets ωa and ωs, which, respectively, denote the set of
tokens that stem from the normalization of an activity label and of a sentence.

sim(ωa, ωs) =

∑
t∈ωa

[max
t′∈ωs

Lin(t, t′)] × id f (t)

2 ×
∑

t∈ωa

id f (t)
+

∑
t∈ωs

[max
t′∈ωa

Lin(t, t′)] × id f (t)

2 ×
∑

t∈ωs

id f (t)
(3.1)

Equation 3.1 provides a value between 0 and 1, where a higher value indicates that
the (token sets of the) activity and sentence are more similar to each other.

Ordering Constraints

We impose constraints in our approach to ensure that the generated alignments respect
the ordering relations included in a process model and a textual description. The con-
sideration of these ordering constraints improves the ability of our approach to identify
the correct correspondences between activities and sentences. Furthermore, they are
vital to the identification of inconsistencies in the form of conflicting orders.

The order of process model activities can be extracted from the flow relation F
of a process model. To represent the relations between activities, we use the weak
order relation � ⊆ A × A. Because the presence of loops in a process model can
affect the restrictiveness of a weak order relation, we compute this relation over all
valid execution sequences from Σvalid that do not contain loops, i.e., those sequences
that do not contain any repeated activities. Formally, we consider the following set of
sequences: Σnl = {σ ∈ Σvalid | 1 ≤ i < j ≤ |σ| : σ(i) , σ(j)}. Then, given two activities
ak, al ∈ A, a weak order relation ak � al defines that al cannot occur before ak when
executing the process, i.e., there is no trace in Σnl for which al occurs before ak. This
relation accounts for choices and parallelism that commonly occur in process models.

52 3.2. INCONSISTENCY-DETECTION APPROACH

Extracting the inter-relations of actions in a textual process description is more
complex. The inherent ambiguity of natural language makes it particularly difficult to
extract the inter-relations of actions. An example of this is observed in sentence s10
of the running example. The phrase “In the meantime, the engineering department
prepares [...]” can be interpreted in different ways. This results in multiple, potential
points for the engineering department to start performing its tasks. Existing approaches
for the analysis of textual process descriptions have been shown to provide suboptimal
results when extracting such relations [29]. Therefore, we here take a conservative
approach when imposing ordering restrictions. In particular, we recognize that textual
descriptions generally describe actions in a chronological order [248]. For this reason,
our rationale is to only allow for the generation of alignments that respect a chronolog-
ical description. We capture this by introducing the strict order relation ⊆ S × S
to formally denote the order of the sentences in S . The expression si s j states that
sentence si precedes sentence s j in the textual description.

s4 — If the order is accepted, the order details are entered into the ERP system.
Inform S&E
department

(a2)

Enter details into
ERP system

(a3)
s5 — Then, the storehouse and the engineering department (S&E) are informed.

Figure 3.4: Correspondences disallowed by ordering constraints

Given the relations � ⊆ A × A and ⊆ S × S , we then define a constraint that
avoids the creation of conflicting correspondences. Specifically, we require that two
correspondences ak ∼ si and al ∼ s j cannot both be included in an alignment ∼ if
ak � al and s j si. Intuitively, this restriction avoids the alignment of an activity ak

to a sentence si, if an action al that occurs after ak is aligned to a sentence before si.
Figure 3.4 depicts an example of this. Because of the ordering relations in this example,
a correspondence s4 ∼ a3 cannot be included in an alignment that also contains s5 ∼ a2.

Finding the Optimal Alignment

Given the semantic similarity scores and the ordering constraints, our approach finds an
optimal alignment ∼̂ ⊆ S × A which maximizes the sum of the similarity scores, while
respecting the ordering constraints. Our approach establishes alignments in which ev-
ery activity is aligned to exactly one sentence. This means that multiple process model
activities can be aligned to the same sentence, but not the other way around.

Because of the choices and parallelism allowed by process models, finding the op-
timal alignment is not straightforward. Different combinations of activity execution
orders must be considered as a possible solution in which the activities are contained
in the textual process description. This can result in a huge number of possible align-
ments. Therefore, this optimization problem calls for an efficient solving approach.
To find the optimal alignment ∼̂, we adopt a best-first search algorithm similar to
those used in machine translation problems [135]. Instead of aligning one language

CHAPTER 3. COMPARING PROCESS MODELS TO TEXT 53

to another, we here align the activities of A with sentences of S . Intuitively, the best-
first search algorithm traverses a search space of partial hypotheses, which consists of
activity-sentence alignments between A and S . The algorithm explores the search space
by expanding the partial hypothesis with the highest possible score. Because the ap-
proach exempts unpromising hypotheses from further expansion, the explored search
space is greatly reduced compared to a more naive approach. Since the algorithm
merely affects computational efficiency—not the resulting optimal alignment—we ab-
stract from further details and refer the interested reader to [135, 276] for a detailed
description. We use the obtained optimal alignment ∼̂ as input for the final step of the
approach: the inconsistency-detection step.

3.2.3 Inconsistency Detection
This section describes the detection of inconsistencies through the analysis of the opti-
mal alignments established in the previous step of our approach. For this analysis, we
introduce so-called predictors. These predictors are metrics, designed to correlate with
characteristics of the generated alignments that differ between consistent and inconsis-
tent model-text pairs. In this section, we first introduce the general notion and desired
properties of predictors for the detection of inconsistencies. Then, we describe two sets
of proposed predictors: one with predictors that detect missing activities, the other to
detect conflicting orders between model and text.

Detection using Predictors

Given an optimal alignment ∼̂, we use predictors to quantify the probability that ∼̂
contains incorrect correspondences. This notion of a predictor is inspired by similar
ones used to analyze alignments in the context of schema and process model match-
ing [103, 283]. The core premise underlying the predictors is that the similarity scores
in the optimal alignments have different characteristics for consistent and inconsistent
model-text pairs. In a consistent pair, every activity is aligned to a sentence with a high
similarity score in the optimal alignment, while this is not the case for inconsistent
model-text pairs.

Our proposed predictors adhere to desired structural properties of matching pre-
dictors: generalization and tunability [241]. Generalization refers to the applicability
of predictors to tasks of different granularity levels. In the context of this work, we
achieve this by defining predictors that can detect inconsistencies at two levels of gran-
ularity: the activity level and the process level. Tunability refers to the ability to tune
predictors such that they put more emphasis on particular quality aspects of the results.
The proposed predictors meet this requirement by allowing users to alternate between
higher precision or higher recall.

Missing Activities

In a model-text pair where all the activities in A are also described by the set of sen-
tences S , we expect that each activity a ∈ A is aligned to a sentence s ∈ S with a
high similarity score sim(a, s). However, if an activity a is not described in a textual

54 3.2. INCONSISTENCY-DETECTION APPROACH

description, i.e., a is a missing activity, then a will not be aligned to a sentence with a
high similarity score. To distinguish between high and low similarity scores, we can
evaluate a similarity score according to three dimensions: (i) by its absolute value, (ii)
by its value relative to the similarity scores of the activity with other sentences, i.e., a
horizontal comparison, and (iii) by its value relative to the similarity scores of other
activities, i.e., a vertical comparison. We introduce predictors to operationalize each of
these perspectives. Each predictor presented here can be applied on an activity level to
detect individual missing activities and on a process level to identify model-text pairs
that contain one or more missing activities.

For our first predictor, we consider the absolute similarity score of the correspon-
dence contained in an optimal alignment ∼̂. A similarity score quantifies the likelihood
that an activity a and sentence s describe the same part of a process. So, a higher value
implies that activity a is less likely to be missing. By contrast, a low similarity score
indicates that the sentence is not as similar to an activity. Therefore, such an activity
is more likely to be missing from the textual description. To capture this property, we
introduce a predictor p-sim. We apply this predictor at activity level and the process
level as follows:

• p-sim(a): the likelihood that activity a represents a missing activity, given as the
similarity score between activity a and the sentence s to which the activity is
aligned in the optimal alignment, i.e., sim(a, s) for a ∼ s ∈ ∼̂;

• p-sim(∼̂): the likelihood that a model-text pair contains one or more missing
activities, given by the lowest similarity score sim(a, s) contained in the optimal
alignment ∼̂, i.e. min{sim(a, s) | a ∼ s ∈ ∼̂}.

A second property that influences the confidence to be placed in a correspondence
a ∼ s relates to the difference between sim(a, s) and the similarity between a and
other sentences in S . The similarity between an activity and a sentence is influenced
by factors such as terminology and the amount of additional details that a sentence
provides for a given action. Such factors can lead to considerable differences in the
similarity scores between correct activity-sentence correspondences. To take these
differences into account, we define predictors that consider a similarity score relative
to other scores. The underlying notion is commonly applied in schema matching in the
form of a dominates property (see e.g., [103, 273]).

The predictor we introduce for this purpose builds on the premise that an activity a
is more likely to be described by a sentence s if sim(a, s) is higher than the similarity
score of a to other sentences in S . The left-hand similarity matrix in Table 3.2 illustrates
this. Both activities a2 and a3 are aligned to sentences with a score of 0.5. For a2 it is
clear that its corresponding sentence s2 is the most similar in the textual description.
However, this clarity is missing for a3 because two others sentences are just as similar
to a3 as its corresponding sentence s3. This implies that s3 is not more similar to a than
these other sentences, which reduces the likelihood that the sentence actually describes
the same process step as a. Thus, despite their equal similarity scores, a3 is more likely
to be a missing activity than a2. To capture this, we define the predictor diff-S:

• diff-S(a): the difference between sim(a, s) for a ∼ s ∈ ∼̂ and the average similar-
ity score of a to sentences in S ;

CHAPTER 3. COMPARING PROCESS MODELS TO TEXT 55

• diff-S(∼̂): the lowest value diff-S(a) for any activity in a ∈ A,
i.e., min{diff-S(a) | a ∈ A}.

Table 3.2: Examplary similarity matrices with correspondences in bold

s1 s2 s3 s4

a1 0.6 0.3 0.2 0.0
a2 0.2 0.5 0.1 0.1
a3 0.2 0.5 0.5 0.5

s1 s2 s3 s4

a4 0.9 0.3 0.2 0.0
a5 0.2 0.4 0.9 0.1
a6 0.2 0.5 0.5 0.5

Third, we compare the similarity score of a correspondence to the similarity scores
of the other correspondences included in ∼̂. Like diff-S, this property considers sim(a, s)
relative to other scores in the similarity matrix in order to capture the differences that
can exist among the similarity scores of correct correspondences. However, we here
perform a vertical rather than a horizontal comparison. The premise underlying this
property is that a correspondence a ∼ s is less likely to represent a correct correspon-
dence if its similarity score is much lower than other similarity scores contained in
the optimal alignment ∼̂. This is illustrated in the two similarity matrices presented
in Table 3.2. The correspondences in the left-hand matrix have an average similarity
score of 0.53. For the right-hand matrix, this average score is 0.77. A score of 0.50
is thus close to the average score of the left-hand matrix. By contrast, this same score
is much further below the average score of the right-hand matrix. Therefore, the cor-
respondence a6 ∼ s3 from the right-hand matrix is much less similar than the average
similarity of the correspondences. This makes a6 more likely to be inconsistent than a3
from the left-hand matrix, despite their equal similarity scores. We operationalize this
characteristic with the predictor diff-A:

• diff-A(a): the difference between sim(a, s) for a ∼ s ∈ ∼̂ and the average similar-
ity scores of the correspondences in ∼̂;

• diff-A(∼̂): the lowest value diff-A(a) for any activity in A, i.e., min{diff-A(a) |
a ∈ A}.

The predictors p-sim, diff-S, and diff-A each predict inconsistencies in the form of
missing activities by quantifying a property that allows us to distinguish between high
and low similarity scores.

Conflicting Orders

Inconsistencies in the form of conflicting orders occur when a process model and an
accompanying textual description describe the steps of a process in different orders.
For instance, the running example shows that the process model activity “Inform S
& E departments” precedes “Enter details into ERP system,” whereas the textual de-
scription describes these steps in the opposite order. The ordering constraints that we
impose on alignments bar our approach from including correspondences between ac-
tivities and sentences when their orders do not match. As a result, it cannot happen
that both of these activities will be aligned to the sentences that actually describe them,

56 3.3. EVALUATION

no matter how high the similarity scores are. Therefore, when conflicting orders exist
between model and text, we can expect to observe large differences between the sim-
ilarity scores contained in an optimal alignment and the similarity scores that would
have been obtained without ordering constraints.

Table 3.3: Fragment of the similarity matrix for the running example

s2 s3 s4 s5 s6

a2 0.1 0.2 0.2 0.7 0.2
a3 0.1 0.1 0.9 0.2 0.1

To illustrate this, consider the similarity matrix in Table 3.3, where a2 refers to
“Inform S & E departments” and a3 to “Enter details into ERP system”. The similarity
score sim(a2, s5) is high (0.7), because both a2 and s4 describe the same process step.
The similarity score for sim(a3, s4) is also high (0.9), for the same reason. However,
since a2 precedes a3 in the model (a2 ≤ a3) and s4 precedes s5 in the textual description
(s4 < s5), a2 ∼ s5 and a3 ∼ s4 cannot both be contained in ∼̂ without violating the
imposed constraints. Therefore, the approach can only align a2 to s3, despite its lower
similarity score. As a result, the similarity score of the correspondence involving a3 is
much lower (0.2) than it would have been if ordering constraints had not been imposed
(0.7). This difference of 0.5 in the similarity score for a single activity is an important
indicator that there are ordering conflicts in the model-text pair.

We capture this difference between consistent and inconsistent model-text pairs
in the max-constrained predictor. This predictor quantifies the maximum difference
that exists between the aligned and potential score for a single activity in a model-text
pair. In this way, it captures the largest similarity difference caused by the ordering
restrictions. We operationalize this as follows:

• max-constrained(∼̂): the maximal difference between the potential and aligned
similarity scores for an activity a ∈ A.

The predictors defined for the detection of missing activities and conflicting orders
each quantify conceptual notions that differ between the similarity scores of consistent
versus inconsistent model-text pairs. In Section 3.3, we present a quantitative eval-
uation that demonstrates how well our approach is able to detect inconsistencies in
practice.

3.3 Evaluation

This section presents a quantitative evaluation that demonstrates the ability of our ap-
proach to identify inconsistencies in model-text pairs. We made the prototypical im-
plementation used for this evaluation publicly available.1

We manually annotated the inconsistencies in a collection of 53 model-text pairs
obtained from practice. This annotation is referred to as the gold standard against

1Download from: www.hanvanderaa.com/downloads/modeltextcomparison

CHAPTER 3. COMPARING PROCESS MODELS TO TEXT 57

which we compare the results of our approach. Section 3.3.1 describes our test collec-
tion in detail. Next, we describe the setup of our evaluation in Section 3.3.2. After-
wards, we present the evaluation results in Section 3.3.3 and discuss the strengths and
weaknesses of our approach in 3.3.4.

3.3.1 Test Collection

To evaluate our approach, we use a collection of 53 model-text pairs that originate
from different sources, including academia, textbooks, industry, and public sector or-
ganizations. The majority of the model-text pairs was introduced in [99] to evaluate
an approach for the generation of process models from textual process descriptions.
We extended this collection with 7 processes obtained from a new industrial source.
Table 3.4 presents the main characteristics of the model-text pairs contained in the test
collection. The process models are heterogeneous with regard to several dimensions,
such as size and complexity. Also, the corresponding textual descriptions vary in sev-
eral aspects. For instance, they describe the processes from different perspectives (first
and third person) and differ in terms of how explicitly and unambiguously they refer
to the process model content. Finally, it is important to note that the ratio of sentences
per activity (S/A) differs considerably throughout the collection. Some sources use a
single sentence on average per activity, while other sources use up to 7 sentences. This
increased ratio follows from the presence of more informational sentences and details
on how certain process steps must be executed. Due to these varying characteristics,
we believe that the collection is well-suited to achieve a high external validity of the
results.

Table 3.4: Overview of the test collection

ID Source Type MT MTm Am MTo A S S/A

1 HU Berlin Academic 4 1 1 0 9.0 10.3 1.1
2 TU Berlin Academic 2 2 2 0 22.5 34.0 1.5
3 QUT Academic 8 0 0 0 6.1 7.1 1.2
4 TU Eindhoven Academic 1 1 2 0 18.0 40.0 2.2
5 VU Amsterdam Industry 7 1 2 0 4.3 30.1 7.0
6 Vendor Tutorials Industry 3 2 3 2 5.3 7.0 1.3
7 inubit AG Industry 4 1 1 1 9.0 11.5 1.3
8 BPM Practitioners Industry 1 0 0 0 4.0 7.0 1.8
9 BPMN Practice Handbook Textbook 3 2 2 1 5.0 4.7 0.9

10 BPMN Guide Textbook 6 5 7 0 7.0 7.0 2.2
11 Federal Network Agency Public Sector 14 4 6 0 8.0 6.4 0.8

Total – 53 19 26 4 7.6 12.0 1.6

Legend: MT = Model-text pairs, MTm = Model-text pairs with missing activities, Am = Total
missing activities, MTo = Model-text pairs with conflicting orders, A = Activities per model
(avg.), S = Sentences per text (avg.), S/A = Sentences per activity (avg.)

58 3.3. EVALUATION

3.3.2 Setup

To conduct the evaluation, we implemented the presented inconsistency checking ap-
proach in the form of a Java prototype. The prototype uses the Stanford CoreNLP
toolkit [180] for the tokenization of PPI descriptions and WS4J for the WordNet-based
semantic similarity computation.2

To provide a basis for comparison of our automated approach, we manually identi-
fied inconsistencies in the test collection. We involved three researchers in the creation
of this gold standard. Two researchers independently identified inconsistencies for
each model-text pair. The inter-annotator agreement was high, having only 4 initial
disagreements on whether or not an activity was missing. The cause for discussion
involved implicitly described actions, such as seen for the “select unchecked part”
activity in the bicycle manufacturing example. The differences were resolved in a dis-
cussion, involving the third researcher to settle ties. Out of the 406 activities contained
in the process models, 26 are considered to be missing in the textual description. These
activities occur in 19 different model-text pairs. Furthermore, 4 model-text pairs were
found to contain conflicting orders.

In our evaluation, we compare the performance of three predictors for the detection
of missing activities, p-sim, diff-S, and diff-A. We apply these predictors at the activ-
ity and process levels. For the detection of model-text pairs with conflicting orders,
we evaluate the performance of the max-constrained predictor. For this part of the
evaluation, we introduce a baseline against which we compare the performance of the
predictor. For this baseline, we first create an alignment without imposing ordering
constraints. Afterwards, we check if this alignment violates any ordering constraints.
We refer to the heuristic that identifies these cases as base-check.

Aside from the choice for a certain predictor, the performance of the approach
strongly depends on the quality of the generated alignments. Our approach uses sev-
eral components to establish these alignments, most importantly the linguistic-analysis
step and the consideration of ordering constraints. To demonstrate the added value of
these individual components, we test the performance of our approach using different
configurations to generate the alignments. In particular, we compare the following four
configurations:

• Baseline (BL): As a baseline configuration, we aligne every activity a to the
sentence s with the highest value for sim(a, s);

• Linguistic analysis (LA): For this configuration, prior to the computation of
similarity scores, we apply the linguistic analysis described in Section 3.2.1. We
thus resolve anaphoric references and extract relevant clauses for the sentences
in the textual description;

• Ordering constraints (OC): This configuration computes an alignment between
activity set A and sentence set S that achieves a maximal similarity score, while
respecting the ordering constraints described in Section 3.2.2;

2See: https://github.com/Sciss/ws4j

CHAPTER 3. COMPARING PROCESS MODELS TO TEXT 59

• Linguistic analysis + ordering constraints (LA + OC): This configuration
applies the full alignment approach. We perform the linguistic analysis step and
impose ordering constraints on the establishment of the optimal alignment.

We quantify the performance of our approach with standard information retrieval
metrics. More specifically, we calculate precision, recall, and F1-score by comparing
the generated results against the manually created gold standard. Precision describes
the fraction of predictions that are correct. Recall represents the fraction of all incon-
sistencies that are identified by our approach. We define these metrics in the context of
this work as given by Equations 3.2 and 3.3.

pre =
|EI ∩ Eρ|

|Eρ|
(3.2) rec =

|EI ∩ Eρ|

|EI |
(3.3) F1 =

2 ∗ pre ∗ rec
pre + rec

(3.4)

Here, we use Eρ to denote the entities, i.e., the set of model-text pairs or activi-
ties, that are predicted to be inconsistent with a prediction score in the range [0, ρ]. A
higher value for ρ thus increases the number of entities that are included in Eρ, i.e., that
are predicted to be inconsistent. EI denotes the set of model-text pairs or activities that
contain a certain type of inconsistency. Finally, we also report the F1-score, which pro-
vides the harmonic mean between precision and recall, as formalized by Equation 3.4.

3.3.3 Results
This section presents the results of the quantitative evaluation. We first asses the abil-
ity of the predictors to detect inconsistencies. Then, we consider how the individual
components of the alignment approach contribute to the quality of the obtained results.

Predictor Performance

We computed precision and recall scores for increased values of the predictor score ρ
for each of the predictors. The precision-recall graphs of Figures 3.5 and 3.6, respec-
tively, depict the performance of the approach for the detection of missing activities
at the activity level and the process level. Both graphs illustrate a trade-off between
precision and recall. The reason for a trade-off to exist is that increasing the recall
requires the consideration of lower confidence values. As a result, some activities are
erroneously classified as missing, which negatively affects precision. The maximum
results achieved by the predictors are presented in Table 3.5. This table also displays
the predictor values that achieve the maximum F1-score, which we here refer to as the
optimal predictor values.
Missing Activities. The precision-recall graph of Figure 3.5 shows that our approach
is able to detect missing activities with a good accuracy. The approach reaches a maxi-
mum F1-score of 0.44 for the p-sim predictor. At this point, 17 missing activities have
been detected (recall = 0.58) with a precision of 0.36. These results should be consid-
ered in light of the relatively low fraction of the total activities that are missing (0.07).
The graph shows that beyond a recall of 0.15, p-sim consistently outperforms the other

60 3.3. EVALUATION

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr
ec

is
io

n

Recall

p-sim diff-A diff-S

Figure 3.5: Precision-recall graph for the detection of missing activities (activity level)

predictors. The diff-A predictor reaches a maximum precision of 0.67 and a maximum
F1-score of 0.37. The predictor diff-S has the lowest performance, with a maximum
precision of 0.33 and F1-score of 0.21.

The precision-recall graph of Figure 3.6 shows that the approach performs even bet-
ter at the process level, particularly using the p-sim predictor. This predictor correctly
identifies more than 40% of the model-text pairs with missing activities with perfect
precision. For increasing recall values, the approach maintains a high precision. The
highest obtained F1-score of 0.83 is reached when all incorrect model-text pairs have
been detected (i.e., recall = 1.00), with a precision of 0.70. The diff-A and diff-S pre-

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr
ec

is
io

n

Recall

p-sim diff-A diff-S

Figure 3.6: Precision-recall graph for the detection of model-text pairs with missing
activities (process level)

CHAPTER 3. COMPARING PROCESS MODELS TO TEXT 61

Table 3.5: Predictor performance evaluation results

Predictor Maximum
precision

Maximum
F1-score

Optimal predictor
value

p-sim(a) 0.39 0.44 0.74
diff-A(a) 0.67 0.37 1.18
diff-S(a) 0.33 0.21 0.92

p-sim(∼̂) 1.00 0.83 0.74
diff-A(∼̂) 1.00 0.69 0.52
diff-S(∼̂) 1.00 0.58 0.47

base-check(∼) 0.16 0.28 –
max-constrained(∼̂) 1.00 0.73 0.18

dictors display lower prediction accuracy, they reach maximal F1-scores of 0.69 and
0.58, respectively.

Conflicting Orders. Lastly, we evaluated the usefulness of the max-constrained metric
for the detection of model-text pairs with conflicting orders. We compare its perfor-
mance to the baseline metric base-check. Note that we here omit the depiction of a
precision-recall graph because there are only four cases with inconsistent orders in the
test collection. The max-constrained predictor identifies these four cases with high
accuracy. The predictor reaches a maximum precision of 1.00 and successfully iden-
tifies all inconsistent model-text pairs with a precision score of 0.57. This results in
a maximum F1-score of 0.73. Furthermore, we can observe that the max-constrained
predictor greatly outperforms the baseline metric. The reason for this is that base-check
yields a considerable amount of false positives, resulting in a precision of 0.16 and a
maximum F1-score of 0.28.

Alignment Configurations

The presented results demonstrate that our approach is able to detect inconsistencies
with high accuracy by using the full configuration for the creation of alignments. Ta-
ble 3.6 presents the performance of the approach for different configurations of the
alignment approach. For the sake of brevity, we depict the highest F1-score achieved
by each predictor for a given configuration.3

The results clearly illustrate that each of the individual components of the alignment
approach contribute positively to the prediction accuracy, since the scores of LA and
OC are higher than the baseline scores reached by BL. The linguistic analysis improves
the performance for all use cases and predictors. Notably, it increases the maximum
performance for the detection of missing activities with 45%, from 0.22 to 0.32. The
performance for the detection of model-text pairs with missing activities is similarly

3Note that the BL and LA configurations cannot detect inconsistent orders, since these configurations do
not incorporate the ordering restrictions required to identify these.

62 3.3. EVALUATION

Table 3.6: Highest F1-measures for different configurations and predictors.

Predictor BL LA OC LA + OC

p-sim(a) 0.22 0.32 0.23 0.44
diff-A(a) 0.20 0.29 0.21 0.35
diff-S(a) 0.15 0.18 0.15 0.23

p-sim(∼̂) 0.62 0.72 0.66 0.83
diff-A(∼̂) 0.61 0.64 0.61 0.69
diff-S(∼̂) 0.54 0.58 0.55 0.58

max-constrained(∼̂) – – 0.50 0.73

increased from a maximum of 0.63 to 0.72. Though the inclusion of ordering con-
straints consistently improves the results in comparison to the baseline configuration,
it does not yield gains as large as the linguistic analysis. For instance, the detection of
model-text pairs with missing activities is improved from 0.63 to 0.66. However, the
usefulness of the constraints becomes particularly apparent when they are used in com-
bination with the linguistic analysis (LA +OC). Then, the results are improved from
0.32 to 0.44 and from 0.72 to 0.83 for the detection of missing activities at the activity
level and process level, respectively.

3.3.4 Discussion

The evaluation results show that our approach successfully identifies inconsistencies
between model-text pairs. Especially at the process level, the approach detects erro-
neous model-text pairs with a high prediction accuracy. The lower performance scores
for inconsistency detection at the activity level can be attributed to two causes. First, it
is inherently easier to detect that inconsistencies exist in a model-text pair than to iden-
tify exactly where these occur. Second, the difference occurs because the approach cre-
ates an alignment optimized for the entire process. Therefore, for inconsistent model-
text pairs, it can happen that a missing activity also impacts the alignments of other
activities in the process. As a result of such a shift, sometimes the wrong activities are
predicted to be missing. This leads to lower precision at the activity level, while the
prediction accuracy at the process level remains unaffected.

The results for the different predictors demonstrate that predictors considering the
absolute similarity values (p-sim) outperform others at the activity and process lev-
els. This implies that the absolute similarity value of an activity-sentence pair has the
strongest correlation with inconsistencies from the considered factors. However, the
performance of the other predictors indicates that the consideration of relative similar-
ity also has its merits. This applies in particular to the diff-A metric, which compares
an activity’s similarity score to the other scores included in an optimal alignment. This
predictor also achieves a high predictive accuracy.

The performance of the max-constrained predictor shows that the approach can ac-
curately identify model-text pairs with conflicting orders between the process steps de-

CHAPTER 3. COMPARING PROCESS MODELS TO TEXT 63

scribed in the process model and those in the textual description. The max-constrained
predictor was, furthermore, shown to greatly outperform the base-check baseline. The
base-check predicts a large number of false positives, because it does not distinguish
between small and large differences in similarity scores. The underlying cause is that,
for various cases in the test collection, not all activities should be aligned to the sen-
tence with the highest semantic similarity score. Instead, such activities are generally
aligned to sentences with a slightly lower score (e.g., a score of 0.55 versus a score
of 0.60). The base-check is not able to differentiate such cases from cases that truly
contain conflicting orders. However, because true conflicting orders are characterized
by much larger differences in similarity scores, the max-constrained predictor does
successfully make this differentiation.

The obtained evaluation results have several implications for the application of the
proposed approach in practice. The results reveal that both the linguistic analysis and
ordering constraints consistently improve the accuracy with which inconsistencies are
detected. This implies that the full configuration (BL + LA) should be used to gen-
erate alignments between model and text. The comparison of the different predictors
furthermore demonstrates that the p-sim and max-constrained predictors achieve the
best results on our heterogeneous data collection. As such, the evaluation shows that
these predictors should be selected for application in practical settings. Finally, it is im-
portant to note the trade-off between activity-level and process-level predictors for the
detection of missing activities. The former provide more fine-granular results, while
the latter predictors achieve a higher predictive accuracy. Since clearing up inconsis-
tencies will always involve manual effort, it is, therefore, worthwhile to consider the
usage of process-level predictors to identify those model-text pairs in a collection that
are most likely to contain inconsistencies.

3.4 Limitations

The evaluation demonstrates that our inconsistency-detection approach achieves pro-
mising results. However, these results need to be considered against the background
of some limitations. In particular, we identify limitations related to the approach and
limitations related to the evaluation.

The main limitation related to the approach is that the alignments we establish are
not always fully correct. Three aspects of the approach play a role here. First, the
employed NLP techniques, such as the Stanford Parser and the anaphora resolution
technique, are not fully accurate. This means that the linguistic analysis step does not
always yield the results that are necessary to properly compute the similarity between
a sentence and an activity. Second, the employed semantic similarity metric is not al-
ways able to identify semantic relationships between words that are only semantically
similar in a particular context. For instance, given the context of a loan application
process, our approach is likely to not identify a relation between a “check applicant’s
history” activity and a sentence that describes this as “determine if the applicant has
had payment issues.” This problem occurs because the link between “history” and
“payment issues” only exists in particular contexts. Third, our approach does not take
discourse statements such as “after” or “before” into account. Instead, we use a con-

64 3.5. RELATED WORK

servative approach that only considers the order in the text, because existing techniques
that analyze discourse statements have been shown to produce inaccuracies [250]. As
a result of these limitations, our approach may identify wrong alignments. Therefore,
the proposed approach remains a prediction approach that is intended as a means to
support users. In this way, our approach greatly helps organizations to quickly detect
inconsistencies between textual and model-based descriptions of their processes.

As for limitations related to the evaluation, we would like to point out that the pre-
sented quantitative results are bound to the specifics of the model-text pairs used in the
evaluation. Still, we tried to compose a data set that is as heterogeneous as possible by
collecting model-text pairs from a broad variety of external sources. This set included
only four model-text pairs with conflicting orders. This should be taken into account
when interpreting the results related to this type of inconsistency. Inconsistencies in
the form of missing activities were better represented in the data collection, with 26
occurrences. Thus, for this type of inconsistency we are confident that our evaluation
indeed shows a realistic picture of the performance of our approach in practice.

3.5 Related Work

The work presented in this chapter relates to two main streams of research: matching
and transformations between conceptual models and natural language texts.

With respect to matching, Section 2.4 presents an extensive overview of this task
and the numerous techniques that address it. In the context of the work presented in
this chapter, it is important to recognize that none of those existing techniques focus on
the alignment between process models and textual process descriptions. Therefore, ex-
isting approaches cannot be applied to detect inconsistencies between process models
and textual process descriptions. Work by Sanchez et al. [245] forms an exception to
this, although it should be noted that their approach represents a follow-up to ours.As
an interesting extension, the approach from [245] also considers the resource and data
perspectives when establishing alignments between model and text.

Research on the transformation between conceptual models and natural language
texts is concerned with transforming a given representation into the other. Prior work
has addressed both directions, model-to-text as well as text-to-model. Transformations
of conceptual models into textual descriptions typically aim at making the information
captured by the model available to a wider audience. Among others, such techniques
have been defined for UML diagrams [188], object models [161], and process mod-
els [166]. Techniques transforming text into models usually aim at providing support
for model creation. Text-to-model transformation techniques also cover a variety of
conceptual models, including UML class diagrams [42] and entity-relationship mod-
els [110]. Several approaches specifically focus on the elicitation of process models
from different types of text documents, such as group stories [111], use case specifica-
tions [253], and process descriptions [99].

Despite the empirically demonstrated usefulness of the discussed transformation
techniques, they do not help to address the challenges associated with the detection of
inconsistencies between process models and texts. Techniques for transforming mod-
els into texts focus on verbalizing the information from the model. Hence, they do not

CHAPTER 3. COMPARING PROCESS MODELS TO TEXT 65

provide any means to align the information from a given model-text pair. Techniques
for transforming process descriptions into models do address the problem of inferring
structural and behavioral process information from a natural language text. However,
these approaches have been found to produce incomplete or inaccurate models that
require extensive manual revision [250]. This makes them unsuitable to support the
automatic detection of inconsistencies between textual and model-based process de-
scriptions.

3.6 Summary
In this chapter, we presented an approach to automatically detect inconsistencies be-
tween textual and model-based process descriptions. Our approach first combines lin-
guistic analysis, semantic similarity measures, and the consideration of ordering rela-
tions to obtain an alignment between the activities of a process model and the sentences
of a textual process description. Afterwards, the approach analyzes the established
alignments in order to detect process model activities that are missing from the associ-
ated textual process descriptions, as well as ordering conflicts that exists between the
two representation formats. This analysis is performed by using a set of predictors
that quantify particular characteristics that differ between the alignments of consistent
and inconsistent model-text pairs. A quantitative evaluation with a collection of 53
real-world processes shows that our approach can indeed successfully identify incon-
sistencies in model-text pairs. We observed that our approach identifies all model-text
pairs with conflicting orders with a precision of 0.57. This means that users only have
to investigate 7 of the 53 model-text pairs in order to resolve all consistencies of this
kind. For the 19 textual processes with missing activities, our approach achieves even
higher levels of accuracy. The approach identifies all instances with a precision of
0.70. Since these results considerably exceed the baseline results against which we
compared our approach, our evaluation demonstrates that our tailored NLP techniques
as well as ordering restrictions positively contribute to the predictive accuracy of the
approach. Therefore, our proposed inconsistency-detection approach can be used by
organizations to quickly identify inconsistencies in their process repositories. As a re-
sult, our approach supports organizations to maintain and improve the quality of their
process documentation in an efficient manner.

4
Conformance Checking based on Uncertain

Event-Activity Mappings

Conformance-checking techniques enable organizations to automatically determinek
whether business processes are executed according to their specifications. Particu-
larly, they check if observed behavior, as recorded in an IT system and represented
in the form of event logs, conforms to the allowed process behavior, typically cap-
tured in a process model [24]. The importance of conformance checking has been
recognized in various contexts, such as legal compliance [239] and auditing [21]. Due
to this importance, numerous conformance-checking techniques have been developed
(cf. [15, 24, 199, 225]). A crucial requirement for all these techniques is that the events
contained in an event log can be related to the activities of a process model [14]. With-
out knowing the relations between events and model activities, it is not possible to
determine if the behavior within a trace conforms to the behavior specified by a pro-
cess model. Despite this dependence on the existence of a, so-called, event-to-activity
mapping, establishing these mappings is a highly complex task. In particular, mapping
techniques face considerable challenges caused by, among others, cryptic event names,
non-conforming behavior, and noise [37]. As a result, automated mapping techniques
often cannot provide a certain solution to the mapping problem. Due to this uncer-
tainty, the goal of mapping techniques becomes choosing the best mapping from a
number of potential ones [175]. Hence, there is always the risk that the selected map-
ping is wrong, i.e., that the selected mapping does not correctly capture the relations
between traces and a process model. In the context of conformance checking, selecting
an incorrect mapping is particularly harmful. If the selected mapping is incorrect, the
results obtained through conformance checking can become incorrect as well. There-
fore, conformance-checking results based on a selected, potential mapping cannot be
trusted. To overcome this issue, this chapter presents a conformance-checking tech-
nique that can be applied in spite of an uncertain mapping of events onto activities.
Our technique assesses the conformance of a trace by considering the entire spectrum
of potential mappings, rather than focusing on a single one. At the basis of our tech-

67

68 4.1. PROBLEM ILLUSTRATION

nique stands the novel concept of a behavioral space as a means to capture multiple
interpretations of uncertain process behavior in a structured manner. By employing be-
havioral spaces, our conformance-checking technique avoids the risks associated with
the selection of an incorrect mapping.

In the remainder of this chapter, Section 4.1 motivates the problem of conformance
checking in the context of uncertain event-to-activity mappings. Section 4.2 describes
our conformance-checking technique. Section 4.3 presents a quantitative evaluation
of the usefulness of our technique. Section 4.4 discusses the limitations of the tech-
nique and its evaluation. Section 4.5 considers streams of related research. Finally,
Section 4.6 summarizes the chapter.

4.1 Problem Illustration

In this section, we illustrate the problem of conformance checking in the context of
mapping uncertainty. In this setting, the goal of conformance checking is to determine
if behavior captured in event log traces is allowed by the behavior specified in the
form of a process model. A trace captures an execution sequence of events. These
events correspond to the actual behavior of a process, because they are extracted from
information systems that record the execution of process steps. By contrast, process
models are used in conformance-checking scenarios to specify the allowed behavior
of a process. A crucial prerequisite for conformance checking is that the events in
traces can be related to the activities of a process model. For example, given a trace
σ = 〈e1, e2, e3, e4, e5〉 and the process model M depicted in Figure 4.1, the events in σ
must be mapped to activities in model M. Otherwise, it is impossible to understand
which activities have occurred in reality and, thus, whether or not σ conforms to M.caise paper

Order received

Check
availability

(a1)

Retrieve
product from
warehouse

(a2)

Manufacture
requested
product

(a3)

Send
invoice

(a6)

Pack
product

(a4)

Ship
product

(a5)

Order handled

product
available

product
not available

(a1)

(a2)

(a3)

(a4) (a5)

(a6)

Figure 4.1: Process model for a simplified order handling process

Unfortunately, establishing a correct mapping between events and activities has
proven to be a considerable challenge. Existing techniques addressing this task can at
best indicate potential mappings and their likelihoods, instead of providing a definite
solution [40, 41]. The reason why mapping techniques fail to provide definite solu-
tions is that the information they can take into account when constructing mappings
often does not suffice to identify relations with certainty. As an example, consider an
event with the label “product obtained”. By considering this label, it is not possible to
determine with certainty whether this event corresponds to activity a2 (“retrieve prod-
uct from warehouse”) or to activity a3 (“manufacture requested product”). Both of
these activities obtain a product, but in a different way. Even more problematic are the

CHAPTER 4. CONFORMANCE CHECKING WITH MAPPING UNCERTAINTY 69

commonly observed event labels with cryptic database field names such as CDHDR
or I SM E [41]. In these cases, not even advanced linguistic analysis tools are able to
identify reliable mappings.

The inability of techniques to reliably establish event-to-activity mappings leads to
mapping uncertainty. As a result, mapping techniques generally construct a number
of potential mappings without being able to determine with certainty which mapping
is correct. Since existing conformance-checking techniques require a single event-to-
activity mapping, mostly the mapping with the highest likelihood is selected as a basis
for conformance checks. However, there is always the risk that this selected mapping is
incorrect and that, consequently, conformance-checking results based on the selected
mapping are incorrect as well.

The main issue of mapping uncertainty is that existing conformance-checking tech-
niques can only be applied on a single, certain event-to-activity mapping. Therefore, in
case of mapping uncertainty, these techniques require the selection of a single mapping
from the set of potential mappings. However, this comes with the considerable risk that
the selected mapping is incorrect and that, consequently, conformance-checking results
based on the selected mapping are incorrect as well. To illustrate the risks of selecting
a single, possibly incorrect, mapping, let ∼1 and ∼2 be two equally likely mappings
between the trace σ and the process model M. Further assume that the mapping ∼1
corresponds to the activity sequence π1(σ) = 〈a1, a2, a4, a5, a6〉 and the mapping ∼2 to
π2(σ2) = 〈a1, a2, a3, a5, a6〉. The activity sequence σ1 conforms to model M, whereas
σ2 does not, because it executes both activities a2 and a3, while it also skips execution
of the mandatory activity a4. Because the conformance of these two activity sequences
differs for this scenario, the assessment of whether or not σ conforms to the process
model M depends on the selection of a mapping relation. If ∼1 is chosen, conformance-
checking techniques will determine that σ conforms to M, whereas the opposite holds
if ∼2 is selected. Therefore, the conformance of σ fully depends on the ability to select
a correct mapping in a situation where it is inherently uncertain what that mapping is.

The previous example illustrates that conformance-checking results based on the
selection of a single, potentially incorrect mapping are not trustworthy. To provide a
comprehensive solution to this problem, this chapter introduces a conformance-checking
technique that takes the entire set of potential mappings into account. Therefore, we
eliminate the need to select a single, possibly incorrect mapping.

4.2 Conformance-Checking Technique

This section describes the conceptual basis of our conformance-checking technique.
It takes as input a trace, a process model, and an uncertain event-to-activity mapping.
Note that the question of how to obtain an uncertain mapping, which consists of a num-
ber of potential event-to-activity mappings, is not the focus of this chapter. Potential
mappings can be obtained using one or more mapping techniques, such as [38,40,251].
In the remainder, Section 4.2.1 first describes the notion of a behavioral space, which
we use to capture the impact of mapping uncertainty on the process behavior described
by traceσ. Then, Section 4.2.2 introduces the conformance-checking metrics that build
on the obtained behavioral spaces.

70 4.2. CONFORMANCE-CHECKING TECHNIQUE

4.2.1 Capturing Mapping Uncertainty using Behavioral Spaces
Mapping uncertainty results from multiple views on which behavior, in terms of pro-
cess model activities, is described by a single trace. This uncertainty manifests itself
through the existence of multiple possible event-to-activity mappings. A single event-
to-activity mapping captures relations between events in a trace σ and the activities in
a process model M, as defined in Definition 4.1.

Definition 4.1 (Event-to-Activity Mapping). Let σ = 〈e1, . . . , en〉 be a trace with a
set of events Eσ and M a process model with an activity set A. An event-to-activity
mapping is a surjective relation ∼ ⊂ Eσ × A. Elements of the relation are referred to
as correspondences, where a correspondence e ∼ a ∈ (Eσ × A) denotes a mapping
relation between an event e and an activity a.

In Definition 4.1, the relation ∼ is defined as surjective, because we assume that
each event in a trace σ is always mapped to an activity. Furthermore, this implies
that a 1:N relation can exist between events and activities. This cardinality captures
the notion that events are typically more fine granular than activities [278]. As an
illustration, consider a trace σ = 〈e1, e2, e3, e4, e5, e6〉 and a mapping {e1 ∼ a1, e2 ∼

a2, e3 ∼ a2, e4 ∼ a4, e5 ∼ a5, e6 ∼ a6}. This mapping indicates that the trace σ,
consisting of six events, corresponds to a sequence of five activities: 〈a1, a2, a4, a5, a6〉.

Mapping uncertainty leads to the existence of multiple potential event-to-activity
mappings. Here, we capture this spectrum in the form of an uncertain event-to-activity
mapping EA(σ,M), as defined in Definition 4.2.

Definition 4.2 (Uncertain Event-to-Activity Mapping). Let σ = 〈e1, . . . , en〉 be a trace
and M a process model with an activity set A. An uncertain event-to-activity mapping
is a tuple EA(σ,M) = (M, φ), with:

• M: a set of event-to-activity mappings between σ and M;
• φ : M → [0, 1]: a function that assigns a probability to each event-to-activity

mappingM(σ,M) ∈ M, such that the sum of the probabilities for all mappings
inM is equal to 1.

In this definition, each mappingM(σ,M) ∈ M represents a potential way to map
the events in σ to the activities in A. The probability function φ assigns a probability
pi to each mapping M(σ,M) ∈ M. These probabilities generally follow from the
confidence of an event-to-activity mapping technique. For instance, a technique based
on semantic similarity scores, such as [40], can quantify the probability as the product
of the similarity scores associated with each correspondence in the mapping. In this
way, mappings with a higher semantic similarity receive a higher probability than the
ones with a lower score. If no probabilities are available, the most straightforward
solution is to assign an equal probability p = 1 / |M| to each mapping.

Given such an uncertain event-to-activity mapping EA(σ,M), we define the notion
of a probabilistic behavioral space as a means to capture all process model behavior
conveyed by trace σ according to the mapping EA(σ,M), i.e., the sequences of process
model activities that follow from the different possible mappings. We shall refer to
such a sequence of process model activities as a trace translation of trace σ, because it

CHAPTER 4. CONFORMANCE CHECKING WITH MAPPING UNCERTAINTY 71

represents a translation of the trace’s events into process model activities. We denote a
trace translation of σ with π(σ).

Definition 4.3 (Trace Translation). Let σ = 〈e1, . . . , en〉 be a trace, M a process model
with an activity set A, andM(σ,M) an event-to-activity mapping between σ and pro-
cess model M. A trace translation π(σ) represents a sequence of activities 〈a1, . . . , am〉

according to the mappingM(σ,M).

Since an uncertain mapping EA(σ,M) consists of multiple event-to-activity map-
pings, a mapping EA(σ,M) results in different trace translations for σ. For instance
in Section 4.1, we described an example where a single trace had two trace transla-
tions, π1(σ) = 〈a1, a2, a4, a5, a6〉 and π2(σ2) = 〈a1, a2, a3, a5, a6〉, which resulted from
two possible mappings. Together, the translations of a trace represent the spectrum of
process behavior potentially conveyed by trace σ, i.e., the behavioral space of a trace.
Since each mapping can be associated with a probability, we include a probabilistic
component in our definition of a behavioral space, as captured in Definition 4.4.

Definition 4.4 (Probabilistic Behavioral Space). Let σ = 〈e1, . . . , en〉 be a trace, M
a process model with an activity set A, and EA(σ,M) an uncertain event-to-activity
mapping between σ and the activity set of process model M. We define a probabilistic
behavioral space as a tuple PBS σ = (Π(σ), φ), with:

• Π(σ): the set of trace translations of trace σ over the activity set A as given by
the event-to-activity mappings in EA(σ,M);
• φ : Π(σ)→ [0, 1]: a function that assigns a probability to each trace translation

in Π(σ), such that the sum of the probabilities assigned to the trace translations
is equal to 1.

The set Π(σ) comprises the set of potential trace translations of trace σ over the
activity set A, where each translation σi ∈ Π(σ) is based on a mappingM(σ,M) con-
tained in EA(σ,M). This set, together with the probabilities provided by the function
φ, provides the basis for the probabilistic conformance metric described next.

4.2.2 Using Behavioral Spaces for Conformance Checking
In this section, we demonstrate how to perform conformance checks by using behav-
ioral spaces. To perform our conformance checks, we introduce a conformance metric
that quantifies the conformance of a behavioral space PBS σ to a process model M.
The metric combines the conformance assessments for individual trace translations
with probabilistic information. Specifically, it determines for each trace translation
π ∈ Π(σ) in a behavioral space whether it is conforming or not.

The goal of conformance checking is to determine if observed behavior in a trace σ
is allowed by the behavioral specification of a process model M. Since uncertain event-
to-activity mappings lead to multiple views on the process model behavior described
by a trace (i.e., its trace translations), all these views need to be checked against the
model M. In this section, we demonstrate how to perform a conformance check given
a probabilistic behavioral space in order to obtain insightful conformance results and
diagnostic information.

72 4.2. CONFORMANCE-CHECKING TECHNIQUE

To perform conformance checks, we introduce a metric that quantifies the confor-
mance of a behavioral space PBS (σ) to a process model M. The metric combines
conformance assessments for individual trace translations with probabilistic informa-
tion. The metric determines for each trace translation π(σ) ∈ Π(σ) in a behavioral
space whether it conforms to M or not. In this way, the ProbCon f metric defined in
Definition 4.5 represents the likelihood that σ conforms to model M.

Definition 4.5 (Behavioral Space Conformance). Let σ be a trace with a probabilistic
behavioral space PBS (σ) = (Π(σ), φ) and M a process model with an activity set A
and its set of valid execution sequences Σvalid(M). Then we define:

• ΠM(σ) = Π(σ)∩Σvalid(M) as the set of trace translations in Π(σ) conforming to
process model M;
• ProbCon f (σ,M) ∈ [0, 1] : as the behavioral space conformance of trace σ to

process model M, given as the sum of all probabilities φ(π(σ)) for each π(σ) ∈
ΠM(σ).

Because of the probabilistic nature of the ProbCon f metric, the metric yields re-
sults that differ from the results obtained by traditional conformance-checking tech-
niques. In traditional conformance-checking scenarios, i.e., without mapping uncer-
tainty, a trace either conforms or does not conform to (a fragment of) a process model.
By contrast, when using our technique, traces are either conforming, non-conforming,
or potentially conforming. Potentially conforming traces are those traces for which
some trace translations conform to a process model, whereas others do not. The con-
formance of these traces is associated with a certain probability 0 < p < 1. Take, for in-
stance, the process model from the running example and a trace σ1 = 〈e1, e2, e3, e4, e5〉

with two trace translations σ1(σ1) and σ2(σ1):

π1(σ1) = 〈a1, a2, a4, a5, a6〉 with probability 0.7
π2(σ1) = 〈a1, a2, a3, a5, a6〉 with probability 0.3

While trace translation π1(σ1) conforms to M, this does not apply for π2(σ1). This lat-
ter translation skips the execution of the mandatory activity F. This leads to a conflict
between the conformance of the different translations of σ1 with respect to M. There-
fore, the trace σ1 is said to be potentially conforming to M with a probability of 0.7,
i.e., ProbCon f (σ1,M) = 0.7. This shows that, even though we cannot make certain
statements about the conformance of σ1 to M, we do know that σ1 is is more likely to
conform than not. Furthermore, we also know the mapping conditions under which σ1
is conforming or non-conforming. Namely, σ1 conforms to M if the correspondence
e3 ∼ a4 holds, whereas the trace is non-conforming if e3 ∼ a3 is true. This type of
diagnostic information is very useful because it provides insights into which aspects
of an uncertain mapping lead to uncertainty in the conformance-checking results for
observed behavior.

It is important to note that the ProbCon f metric, despite its probabilistic nature
and the presence of mapping uncertainty, can often still produce non-probabilistic (i.e.,
deterministic) conformance-checking results. To illustrate this, consider the traces σ2
and σ3 with the following associated trace translations:

CHAPTER 4. CONFORMANCE CHECKING WITH MAPPING UNCERTAINTY 73

π1(σ2) = 〈a1, a2, a4, a6, a5〉 π1(σ3) = 〈a1, a2, a3, a6, a5〉

π2(σ2) = 〈a1, a3, a4, a6, a5〉 π2(σ3) = 〈a1, a3, a2, a6, a5〉

For trace σ2, mapping uncertainty has resulted in two trace translations that differ
with respect to their second activity: a2 for π1(σ2) and a3 for π2(σ2). Despite this un-
certainty, we can still with certainty state that σ2 conforms to process model M. The
reason is that both trace translations conform to M, since M allows for the execution
of either activity a2 or a3. As a result, ProbCon f (σ2,M) = 1.0, thus yielding a de-
terministic result. In a similar fashion, we can be sure that trace σ3 does not conform
to M despite of its two different translations. Translations π1(σ3) and π2(σ3) execute
activities a2 and a3 in two different orders. However, since model M only accepts the
execution of one and not both of these activities, neither of the translations conform to
M, leading to the deterministic outcome ProbCon f (σ3,M) = 0.0.

The previous example illustrates that our conformance-checking technique can
be used to determine conformance with certainty in situations where traditional con-
formance-checking techniques would not be able to make trustworthy conformance
assessments. In Section 4.3, we demonstrate the usefulness of this property in practical
settings.

4.3 Evaluation
In this section, we present an evaluation that we conducted to demonstrate the capabil-
ities of the proposed conformance-checking technique for uncertain event-to-activity
mappings. The goal of this evaluation is to assess how the impact of mapping un-
certainty on the conformance-checking task can be reduced by using our technique.
To achieve this, we compare results obtained through our technique against results
obtained by using a traditional conformance-checking technique. We apply these tech-
niques on a collection of real-world process models and accompanying event logs.
Specifically, we compare for how many traces in these event logs the two techniques
can provide conformance-checking results with certainty.

In the remainder, Section 4.3.1 introduces the test collection used for the evaluation
in detail. Section 4.3.2 describes the setup of our evaluation. Finally, Section 4.3.3
presents the evaluation results.

4.3.1 Test Collection
To perform the evaluation, we use a collection of real-world business process mod-
els from the BIT process library, first analyzed in an academic context by Fahland et
al. [92]. The BIT process library consists of 886 process models from various indus-
tries, including the financial services and telecommunication domains. The same col-
lection that has been used to test several event-to-activity mapping approaches [37,41],
which motivates our choice for it. Hence, we believe that results obtained by using this
collection present a realistic view on the applicability of the event-to-activity mapping
approach against which we compare our conformance-checking technique. Further-
more, due to the size of the collection and its broad coverage of real-world process

74 4.3. EVALUATION

Process model

1. Generate
event log &
insert noise

2. Generate
event-to-activity

mapping(s)

4. Perform
compliance

check

Compliance-checking
results

3. Compute
behavioral space

per trace

Figure 4.2: Overview of the evaluation setup

models, the collection seems well-suited to achieve a high external validity of the re-
sults.

From the test collection, we omitted any process model with soundness issues such
as deadlocks or livelocks. Furthermore, we omitted a number of large models for which
the event-to-activity mapping approach was not able to produce a results due to mem-
ory shortage. Note that the same filtering steps are also applied in [37]. As a result
of the filtering, a collection of 598 process models remains available for usage in our
evaluation.

4.3.2 Setup
Figure 4.2 depicts the three main steps of our evaluation setup. To perform these steps,
we employ the ProM6 framework, which provides a vast amount of so-called plug-ins
that implement process mining techniques.1 In the first two steps of this evaluation,
we build on existing plug-ins for event-to-activity mapping techniques, as described
in [37]. For the third step, we implemented the generation of behavioral spaces and our
proposed technique for conformance checking as a plug-in, which is available as part
of the BehavioralSpaces package in ProM6.

In step 1 of the evaluation, we first generate an event log for each of the 598 process
models in the test collection. In line with the evaluation in [37], we generate a log
containing 1000 traces for each model. For process models that include loops, we
generate traces with a maximum length of 1000 events. Since we are interested in
conformance checking, we transform these fully conforming logs into logs containing
non-conforming behavior. We achieve this by using a noise-insertion plug-in in ProM.2

This plug-in randomly adds noise to a log (i.e., non-conforming behavior) by shuffling,
duplicating, and removing events for a given percentage of traces. In this manner, we
generate 11 different event logs, containing 0%, 10%, . . . , 90%, 100% noise.

In step 2, we take a process model and an accompanying event log and use the map-
ping technique from [37] to establish an event-to-activity mapping. We have selected
this particular technique because it returns all potential mappings in case of uncer-
tainty. Furthermore, the technique is relatively robust in the context of non-conforming
behavior. In case the approach computes a single mapping, i.e., there is no mapping
uncertainty, we can conclude that for this process model and event log, traditional
conformance-checking techniques suffice to determine the conformance of all traces
in the log. If the mapping approach returns multiple possible mappings, i.e., there is
mapping uncertainty, we continue with the third step of the evaluation.

In step 3, we first construct a behavioral space for a trace based on the uncertain

1See www.promtools.org for more information and to download the framework.
2Provided by the Event2ActivityMatcher package.

CHAPTER 4. CONFORMANCE CHECKING WITH MAPPING UNCERTAINTY 75

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

D
et

er
m

in
is

tic
 c

on
f.

re
su

lts

Traces with noise

Behavioral space-based conformance Traditional conformance-checking

Figure 4.3: Evaluation results for deterministic conformance checking

event-to-activity mapping EA established in the previous step. We obtain a behav-
ioral space by creating a trace translation for each of the potential event-to-activity
mappings included in EA, as described in Section 4.2.1. Afterwards, we perform a
conformance check between the obtained behavioral space and the process model us-
ing the approach described in Section 4.2.2. If this method returns a ProbCon f value
of 0.0 or 1.0 for the entire process model, we can conclude that our technique is able
to provide a non-probabilistic conformance-checking result for the trace. This means
that we know whether or not σ conforms to the process model with certainty. For other
values, also the consideration of behavioral spaces does not suffice to be sure about the
conformance of σ. Nevertheless, our technique still obtains probabilistic results and
diagnostic information, whereas traditional conformance-checking techniques cannot
provide any trustworthy results for these cases.

4.3.3 Results

Figure 4.3 presents the results of our evaluation experiments. The figure illustrates for
which percentage of traces deterministic conformance-checking results are obtained by
our and traditional techniques.

For noise level 0, where all traces in the event logs conform to the process models,
we observe that the mapping approach establishes a single event-to-activity mapping
for 71% of the models in the collection, which means that traditional techniques can
provide (deterministic) results for 71% of the traces. Because these logs do not con-
tain non-conforming behavior, the inability to establish mapping for certain models is
caused by activities which are behaviorally identical to each other. Such cases can be
seen for activities C and D of the running example. Because of these issues, traditional

76 4.4. LIMITATIONS

conformance-checking techniques cannot assess the conformance of 29% of the traces.
However, by using behavioral spaces, we can still determine the conformance of a trace
when mapping uncertainty is caused by such behavioral equivalent activities. Hence,
by using our proposed conformance-checking technique, we can provide deterministic
conformance-checking results for all traces.

For increasing noise levels, the ability of the mapping approach to establish a sin-
gle event-to-activity mapping diminishes. For logs with 10% and 20% noisy traces the
approach can still establish a mapping for approximately 66% of the process models,
as indicated by the 66% deterministic conformance results in Figure 4.3. However,
this percentage sharply drops to 33% for event logs with 40% noise, followed by only
21% certainty for noise levels above 60%. As a result of these steep drops, the ability
of traditional conformance-checking techniques to provide trustworthy conformance-
checking results also sharply decreases. Although our behavioral space-based tech-
nique can also provide less deterministic results when the level of noise increases, this
decrease is considerably less severe than for the benchmark. For instance, at 30%
noise, our technique can still provide deterministic results for 83%, whereas traditional
techniques can only provide such results for 55% of the cases. For the highest noise
levels, our technique can still provide deterministic results for approximately 30% of
the traces, which means that the technique outperforms the benchmark by close to 50%.

In summary, traditional conformance-checking techniques become less and less
useful. For high noise levels, they can provide results for as little as 21% of the traces.
Although the deterministic results obtainable through conformance checking with be-
havioral spaces is also affected by the increased levels of noise, the impact is much
smaller. Therefore, we can conclude that in practical scenarios our conformance-
checking technique is much wider applicable than traditional conformance-checking
techniques. Furthermore, a crucial aspect in favor of our conformance-checking tech-
nique is that even in cases where also our technique cannot provide deterministic
conformance-checking results, our technique still provides trustworthy conformance-
checking information in the form of probabilistic results and diagnostic insights.

4.4 Limitations

The evaluation demonstrates that our conformance-checking technique can be used to
obtain trustworthy results where traditional conformance-checking approaches fail to
do so. However, these results need to be reflected against the background of some lim-
itations. In particular, we identify limitations related to the utilized mapping technique,
the conformance-checking technique, and limitations related to the evaluation.

Our proposed technique has to be considered in light of the limitation that the ob-
tained conformance-checking results are dependent on the quality of the generated
event-to-activity mappings. Most importantly, its results can be negatively affected
if the correct mapping is not included in the set of potential mappings generated by any
approach. Still, by applying our technique, we eliminate the need to select a mapping
from the set of potential techniques. Hence, our technique significantly reduces the
possibility of drawing incorrect conclusions.

A point of consideration regarding our conformance-checking technique is that we

CHAPTER 4. CONFORMANCE CHECKING WITH MAPPING UNCERTAINTY 77

base our conformance metric on the conformance of a full trace to a process model.
This means that our technique does not distinguish between trace translations that
are completely non-conforming and translations that are only slightly non-conforming.
Such distinctions can be highly insightful [13, p.195], especially in order to investigate
causes of non-compliance. We justify our choice for full trace conformance because
the consideration of partial trace conformance would impede the interpretability of the
ProbCon f metric. Such a metric would represent a product of probabilities and con-
formance levels, which are both non-integers in the range [0, 1]. Such values would
lack clear meaning, given that a lower conformance score could be caused by various,
orthogonal factors. Nevertheless, it is important to be aware that our metric is based on
full trace conformance when interpreting the obtained results.

A limitation related to the evaluation of our technique is that our test collection
consisted of partially generated data. While the process models used for the evaluation
were obtained from a collection of real-world models, the event logs were automati-
cally generated. This means that the obtained results may not fully reflect the situation
in practice, where event logs related to the process models may have different charac-
teristics. Nevertheless, we generated logs with varying levels of noisy behavior, which
means that the utilized test collection contains behavior that can be observed in a va-
riety of situations. Since our evaluation results show that our conformance-checking
technique outperforms traditional techniques for all noise levels, we are confident that
the improved performance also holds for real-world event logs.

4.5 Related Work

The work presented in this chapter primarily relates to two major research streams:
event-activity mapping and conformance checking.

Our conformance-checking technique builds on techniques for the establishment
of mappings between events and activities. Existing mapping techniques approach
this goal in different ways, each with its own merits and limitations. An approach by
Baier et al. [40] is the most extensive approach and the only one that focuses on the
establishment of many-to-many relations between events and activities. The approach
considers label similarity, work instructions associated with process models, and struc-
tural information in order to establish mappings. Despite the consideration of a variety
of information, the approach still depends on human input in order to remove ambi-
guity, making it a semi-automated approach. Other approaches [37, 41] purely focus
on behavioral similarity between events and activities. While these approaches only
focus on one-to-one relations, they have been shown to be relatively robust to noise
and non-conforming behavior. Work by Senderovich et al. [251] focuses on a specific
situation for event to activity mapping. Specifically, the approach derives events based
on information obtained from sensors in hospitals and aligns these logged events to
process activities. Despite this specific context, the approach also deals with mapping
uncertainty, which can lead to multiple potential event-to-activity mappings. There-
fore, our conformance-checking technique is complimentary to all of these mapping
approaches.

Process conformance-checking techniques are applied in various application sce-

78 4.6. SUMMARY

narios, including process querying [33], legal conformance [239], and auditing [21].
A plethora of techniques exist for this purpose (cf. [15, 24, 199, 225]). In this chap-
ter, we have used techniques that perform conformance checks based on behavioral
profile relations, introduced in [279]. These techniques are computationally highly ef-
ficient, which makes them an ideal choice for conformance checking in the context of
the potentially vast number of translations per trace. Other commonly used techniques
perform conformance checks based on so-called alignments. These techniques, intro-
duced in [15, 24], provide different diagnostic information than conformance checks
based on behavioral profiles. Furthermore, the conformance checks can be considered
to be more accurate in certain situations, because behavioral profile relations abstract
from some details of process behavior. However, these techniques are computation-
ally much more demanding than the highly efficient conformance checks based on
behavioral profiles. For the purpose of efficiency, recent advances in decomposed con-
formance checking present a promising direction [199]. Since the interpretations in a
behavioral space generally have considerable overlaps, such techniques can be useful
in order to reduce the computation time required for conformance checking.

4.6 Summary
In this chapter, we introduced a conformance-checking technique that can be used in
the presence of uncertain event-to-activity mappings. Our technique provides con-
formance-checking results without the need to select a single, possibly incorrect map-
ping to base conformance checks on. This is achieved by considering the entire spec-
trum of possible mappings generated by event-to-activity mapping techniques and cap-
turing this spectrum in a behavioral space. Our probabilistic conformance-checking
metric then provides insights into the fraction of conforming mappings, as well as use-
ful diagnostic information. Therefore, our conformance-checking technique avoids the
risk of drawing incorrect conformance conclusions. A quantitative evaluation based
on a large collection of real-world process models demonstrated that our technique
can be used to obtain results in a vast number of cases where traditional conformance-
checking techniques fail to do so. In particular, our technique was able to provide
deterministic results for up to 50% more cases than traditional techniques.

5
Dealing with Ambiguity in Textual Process

Descriptions

The importance of automated conformance-checking has resulted in numerous con-
formance-checking techniques (cf. [15,33,63,279]), including the technique presented
in Chapter 4. What these techniques have in common is that they rely on a structured
specification of allowed behavior, mostly in the form of a process model. As a result,
these techniques ignore the wealth of information that is contained in less structured
forms of process documentation, such as textual process descriptions [99]. An impor-
tant reason for this can be found in the inherent ambiguity of natural language. This
ambiguity can lead to uncertainty about the exact specification of a process, which
poses a considerable challenge to conformance-checking techniques. In prior work,
text-to-process model generation techniques have circumvented this problem by intro-
ducing interpretation heuristics [99, 111, 253]. In this way, these techniques obtain a
single process-oriented interpretation of the text, in spite of the presence of ambiguous
sentences. This interpretation, however, contains assumptions on the correct interpre-
tation of essentially undecidable ambiguity issues. So, there is always the risk that the
derived interpretation conflicts with the proper way to execute the process. As a result,
the focus on a single, assumed interpretation can lead to incorrect and, thus, untrust-
worthy conformance-checking results. To provide a rigorous solution for this problem,
this chapter presents a conformance-checking technique that avoids the need to impose
assumptions on the correct interpretation of ambiguous textual process descriptions.
To achieve this, we again build on the concept of behavioral spaces, as introduced in
Chapter 4, to capture the impact of behavioral ambiguity.

The remainder of this chapter is structured as follows. Section 5.1 illustrates the
problems caused by ambiguity in textual process descriptions. Section 5.2 describes
how the concept of a behavioral space can be used to capture ambiguity in textual
process descriptions. The section, furthermore, presents a technique for the automated
generation of behavioral spaces for this purpose. Section 5.3 illustrates the use of the
generated behavioral spaces for conformance checking. Section 5.4 introduces a semi-

79

80 5.1. PROBLEM ILLUSTRATION

After a claim is received, a claim officer reviews the request and records the claim
information. The claim officer then validates the claim documents before writing
a settlement recommendation. A senior officer then checks this recommendation.
The senior officer can request further information from the claimant, or reject or
accept the claim. In the former case, the previous steps must be repeated once the
requested information arrives. If a claim is rejected, the claim is archived and the
process finishes. If a claim is accepted, the claim officer calculates the payable
amount. Afterwards, the claims officer records the settlement information and
archives the claim. In the meantime, the financial department takes care of the
payment.

Figure 5.1: Exemplary description of a claims handling process.

automated pruning technique that can be used to improve the quality of conformance-
checking results. Section 5.5 demonstrates the usefulness of behavioral spaces and our
proposed pruning technique through a quantitative evaluation using real-world data.
Section 5.6 considers limitations of the proposed work and its evaluation. Section 5.7
discusses streams of related work. Finally, we summarize the chapter in Section 5.8.

5.1 Problem Illustration

In this section, we illustrate the problem associated with conformance checking of pro-
cess behavior against textual process descriptions. The key challenge in this context
is the ambiguity of natural language, as discussed in Section 2.3.4. Because confor-
mance checking involves the comparison of observed versus allowed behavior, in this
context we are particularly concerned with ambiguity related to the allowed process
behavior described in a text. We shall refer to this as behavioral ambiguity. Behav-
ioral ambiguity occurs when statements about the relations that exist between process
steps can be interpreted in different ways. We illustrate the problem of behavioral am-
biguity through the simplified description of a claims handling process, as presented
in Figure 5.1. The description uses typical patterns to describe ordering relations, as
observed in process descriptions obtained from practice and research [99].

At first glance, the description from Figure 5.1 may appear to be clear. However,
on closer inspection, it turns out that the description does not provide conclusive an-
swers to several questions regarding the proper execution of the described process. For
instance:

Q1. Is it allowed that the claims officer records the claim information before review-
ing the request?

Q2. Does it suffice for the claim officer to rewrite the settlement recommendation in
case additional information has been requested?

Q3. Can the financial department start paying the claimant while the settlement in-
formation is still being recorded?

CHAPTER 5. DEALING WITH AMBIGUOUS TEXTUAL DESCRIPTIONS 81

Based on the information provided in the textual description, these questions are
not clearly decidable. This lack of decidability results from two forms of behavioral
ambiguity: type ambiguity and scope ambiguity. Type ambiguity occurs when a tex-
tual description does not clearly specify the type of order relationship between two
activities. For instance, the relation between the “review request” and “record claim
information” activities in the first sentence is unclear. The term “and” simply does not
allow us to determine whether these activities must be executed sequentially or whether
they can be executed in an arbitrary order (Q1). Scope ambiguity occurs when state-
ments in a textual description underspecify to which activity or activities they precisely
refer. This type of ambiguity particularly relates to repetitions and parallelism. For
instance, the statement “the previous steps must be repeated” does not clearly specify
which activities must be performed again (Q2). Similarly, the expression “in the mean-
time” does not define when the financial department can start performing its activities
(Q3).

As a result of such ambiguous statements, there are different views on how to prop-
erly carry out the described process. When deriving a single structured interpretation
from a textual process description, as done by process model generation techniques
(cf. [99, 111, 253]), there is always the risk that a derived interpretation conflicts with
the proper way to execute the process. The focus on a single interpretation can, there-
fore, lead to wrong conclusions when reasoning about a business process. This can,
for instance, result in a loss of efficiency by not allowing for parallel execution where
possible (Q3). Furthermore, it can result in non-conformance with regulations, for ex-
ample, by failing to impose necessary ordering restrictions (Q1) or by not repeating all
of the required steps when dealing with the receipt of new claim information (Q2).

To avoid the problems associated with using an assumed interpretation, automated
reasoning techniques should take into account all reasonable interpretations of a textual
process description. Therefore, we next describe a technique that achieves this by
employing the concept of behavioral spaces, as introduced in Chapter 4, in the context
of behavioral ambiguity in textual process descriptions.

5.2 Capturing Ambiguity Using Behavioral Spaces

This section describes how process behavior from ambiguous textual process descrip-
tions can be captured using behavioral spaces. For this purpose, we describe an ap-
proach that automatically generates a behavioral space from a textual process descrip-
tion. As shown in Figure 5.2, this approach consists of three main steps. First, a textual
process description T is parsed in order to identify and analyze the set of behavioral
statements S. Second, the proposed approach generates behavioral interpretations for
each statement in S. Third and lastly, the different statement interpretations are com-
bined into a collection of process interpretations that, together, comprise a behavioral
space BS .

In the remainder of this section, we present the details on each of these three steps.
Given the focus on behavioral ambiguity of this chapter, we mainly describe those as-
pects of the generation procedure that are specific to the consideration of ambiguity.
Existing text-to-process model generation approaches, cf. [99], already address most

82 5.2. CAPTURING AMBIGUITY USING BEHAVIORAL SPACES

1. Parse textual
description

Textual process
description

2. Compute
interpretations per

statement

3. Generate
behavioral

space

Behavioral
space

Figure 5.2: Steps involved to construct a behavioral space from a textual description

challenges related to the parsing of textual descriptions (step 1) and related to the ex-
traction of behavioral relations for unambiguous behavioral statements (part of step 2).
When illustrating the steps of our approach, we use the activity identifiers denoted in
Table 5.1 to refer to activities described in the running example.

Table 5.1: Activities in the running example

ID Activity ID Activity

a1 Receive claim a8 Reject claim
a2 Review request a9 Accept claim
a3 Record claim information a10 Receive requested information
a4 Validate documents a11 Calculate payable amount
a5 Write settlement recommendation a12 Record settlement information
a6 Check recommendation a13 Archive claim
a7 Request further information a14 Arrange payment

5.2.1 Parsing Textual Process Descriptions
The first step in the approach is to parse a textual process description T . The goal of
this parsing step is to identify a set of behavioral statements S and to extract behav-
ioral information from these statements. Each behavioral statement in a text describes
a single type of relation that holds between a number of activities. Therefore, a sen-
tence in a textual description can contain more than a single behavioral statement. For
example, the sentence “After a claim is received, a claim officer reviews the request
and records the claim information”, contains two separate behavioral statements. One
statement describes the strict order relation between “claim is received” and “reviews
the request”. The other describes an ambiguous relation between “reviews the request”
and “records the claim information”.

For each behavioral statement in S, the parsing step extracts the parts of the state-
ment that refer to process concepts and their inter-relations. As such, the output of the
parser consists of three semantic components that together comprise a behavioral rela-
tion of the form: <source, relation type, target>, for each behavioral statement. These
components are a source reference, a relation type reference, and a target reference. We
speak about references, rather than process concepts here, because textual descriptions
often use different ways to refer to the same concept. For instance, “previous activity”
provides a reference to some aforementioned activity; it is not a process concept itself.

CHAPTER 5. DEALING WITH AMBIGUOUS TEXTUAL DESCRIPTIONS 83

To clarify the parsing results obtained in this manner, we present the parsing results
for three statements in Table 5.2. We will use these examples in the remainder of this
section to further illustrate the algorithm that generates statement interpretations.

Table 5.2: Exemplary outcomes of behavioral statement parsing

ID Statement Source ref. Relation ref. Target ref.

ς1 After a claim is re-
ceived, a claim officer
reviews the request

claim is received
(a1)

after reviews the request
(a2)

ς2 a claim officer reviews
the request and records
the claim information

reviews the request
(a2)

and records the claim
information (a3)

ς3 In the meantime, the
financial department
takes care of the
payment

ε (not specified) meantime takes care of pay-
ment (a14)

For this parsing step we can employ the parsers used by existing approaches for
the generation of process models from texts, i.e., text-to-model generators, such as the
ones described in Section 2.3.5. These approaches use a combination of standard NLP
tools and heuristic-based techniques. NLP tools, such as the Stanford Parser [140], are
used to identify the grammatical structure of sentences. This structure is important to
extract the business object on which an action is being performed and to identify the
actor who is performing the action. For example, the “claims officer” (actor) “reviews”
(action) “the request” (business object). While the NLP tools mainly provide general
techniques to analyze individual sentences and, thereby, extract activities, more tailored
techniques are necessary to extract the ordering relations that exist between activities.
For this purpose, model generation approaches employ heuristic-based techniques that
recognize typical patterns used to express ordering relations. Such patterns include
sequences like ”After activity i, do activity j” or choices like “If condition, then activity
i, else activity j”. Since these techniques are extensively described in related work, we
do not elaborate on them. The interested reader may consult the work by Friedrich et
al. [99] for a detailed description of a state-of-the-art parsing technique.

5.2.2 Computing Statement Interpretations

Behavioral ambiguity in a textual process description occurs when behavioral state-
ments can be interpreted in different manners. We refer to these statements as ambigu-
ous behavioral statements. These statements result in multiple, conflicting activity re-
lations. For instance, the statement “a claim officer reviews the request and records the
claim information” results in two interpretations. It is unclear whether this statement
implies a strict order or an interleaving order between the two described activities.

In the remainder, we use the term statement interpretation to refer to the set of
behavioral relations that are associated with a single interpretation of a behavioral

84 5.2. CAPTURING AMBIGUITY USING BEHAVIORAL SPACES

statement. Unambiguous behavioral statements result in a single statement interpre-
tation, whereas ambiguous statements lead to multiple interpretations. Definition 5.1
captures this notion. In this definition, we employ the behavioral profile relations
from [279] to capture relations between activities. This choice is based on two main
criteria. First, behavioral profile relations allow for an intuitive representation of the
concepts we introduce in the remainder of this chapter. Second, the relations can be
used for computationally efficient conformance checks. This feature is important be-
cause the computational complexity of conformance checks increases with the number
of interpretations of a textual process description.

The behavioral profile relations capture the ordering restrictions that are in effect
between pairs of activities. Four different behavioral profile relations can exist for an
activity pair (ai, a j). The strict order relation ai a j is used to express that activity ai

cannot be executed after the execution of activity a j. The reverse strict order relation
ai

−1 a j indicates the opposite restriction, namely that ai cannot be executed after
the execution of ai.1 The exclusiveness relation ai + a j denotes that either activity ai

or activity a j can be executed in a single process instance. Finally, the interleaving
order relation ai || a j states that ai and a j can be executed in an arbitrary order. Using
the activity identifiers specified in Table 5.1, this results in the relation a1 a2 as a
relation that holds between “receive claim” and “review request”.

Definition 5.1 (Statement Interpretations). Let ς be a behavioral statement in the set
of behavioral statements S of a textual process description T , AT the set of activities
described in T , and R = { , −1,+, ||} the set of behavioral profile relations. We
define Γς as a set consisting of one or more statement interpretations for the statement
ς. Each statement interpretation γ ∈ Γς captures the behavioral relations that follow
a possible interpretation of ς, which is defined as a partial function γ : AT × AT 9 R
that assigns a behavioral profile relation from R to a pair of activities from AT , if any.

In its second step, our approach constructs interpretations for each behavioral state-
ment in S. Algorithm 1 formalizes this part. The algorithm takes as input a parsed
behavioral statement ς ∈ S, in which the semantic components have been identified.
Then, it generates one or more statement interpretations, depending on the presence
and the type of ambiguity in ς. Given a statement ς ∈ S, we distinguish three cases for
this: (i) ς is unambiguous, (ii) ς contains type ambiguity, or (iii) ς contains scope am-
biguity. For unambiguous statements, we obtain a single statement interpretation per
behavioral statement. For the two types of ambiguous statements, we obtain multiple
interpretations to reflect the various ways in which the statements can be interpreted.
The following sections describe each of the three cases in detail.

Unambiguous Behavioral Statements

Generating a process interpretation for an unambiguous statement is relatively straight-
forward: all references in the statement can be resolved in a single and unambiguous
manner. For these cases, we can generate a single statement interpretation by simply
using the text-to-model generation approach to resolve the references and to construct

1Note that the reverse strict order relation ai
−1 a j can only exist if and only if a j ai.

CHAPTER 5. DEALING WITH AMBIGUOUS TEXTUAL DESCRIPTIONS 85

Algorithm 1 Computing interpretations for a behavioral statement
1: function computeStatementInterpretations(ParsedStatement ps)
2: Set interpretations = new Set();
3: if ps.isUnambiguous() then . Statement is not ambiguous
4: Set sourceActivities = ps.getSourceActivities();
5: Set targetActivities = ps.getTargetActivities();
6: RelationType r = ps.getRelationType();
7: interpretations.add(createInterpretation(sourceActivities, r, targetActivities);
8: if ps.hasTypeAmbiguity() then . Relation type is ambiguous
9: Set sourceActivities = ps.getSourceActivities();

10: Set targetActivities = ps.getTargetActivities();
11: for RelationType r ∈ RelationTypes.get(ps.getRelationReference()) do
12: interpretations.add(createInterpretation(sourceActivities, r, targetActivities);
13: if ps.hasScopeAmbiguity() then . Scope of source reference is ambiguous
14: Set targetActivities = ps.getTargetActivities();
15: RelationType r = ps.getRelationType();
16: Set sourceActivities1 = getPrecedingActivitiesWithSameResource(ps);
17: interpretations.add(createInterpretation(sourceActivities1, r, targetActivities);
18: Set sourceActivities2 = getPrecedingActivitiesWithSameObject(ps);
19: interpretations.add(createInterpretation(sourceActivities2, r, targetActivities);
20: Set sourceActivities3 = getActivitiesFromPrecedingControlFlowBlock(ps);
21: interpretations.add(createInterpretation(sourceActivities3, r, targetActivities);
22: return interpretations;

a behavioral relation. Algorithm 1 describes this creation of an interpretation for unam-
biguous statements in lines 3–7. Since there is no ambiguity for any of the references,
the employed text-to-model generation approach directly provides the set of source ac-
tivities, target activities, and the relation type for the parsed statement. For example, in
statement ς1, the generation approach used to parse the statement will correctly iden-
tify that the “claim is received” activity a1 should precede the “reviews the request”
activity a2, yielding the relation a1 a2.

Statements with Type Ambiguity

A behavioral statement with type ambiguity describes a relation among a specific set
of activities, but does not clearly define the type of relationship. Such statements can
be identified because they have an ambiguous way to refer to the relation type, i.e. the
relation reference is ambiguous. In line 8, Algorithm 1 checks if statement ς has type
ambiguity by determining if the relation reference (relationRef) is a known ambiguous
type indicator. In the context of this work, we focus on two ambiguous type indicators,
namely the terms and and or. It is important to distinguish between cases where re-
lationRef = “and” and cases where relationRef = “and, then” or similar. In the latter
cases, the relation type is not ambiguous, since a sequential relation is clearly spec-
ified. Although these statements with unclear relation types are ambiguous, we can
generate a set of statement interpretations that accurately capture the different possible
interpretations.

86 5.2. CAPTURING AMBIGUITY USING BEHAVIORAL SPACES

If a statement indeed suffers from type ambiguity, the algorithm continues by re-
solving the unambiguous source and target activity references (lines 9–10). After-
wards, the algorithm generates a single statement interpretation for each applicable
relation type (lines 11–12). For example, for statement ς2 from Table 5.2, we generate
one statement interpretation that contains a sequential relation and one that contains an
interleaving order relation between activities a2 and a3.

Statements with Scope Ambiguity

Dealing with behavioral statements with scope ambiguity represents the most complex
case of the three. These statements describe the existence of a relation, but do not spec-
ify between which activities this relationship holds. In practice, such ambiguity occurs
with respect to the set of source activities to which a behavioral statement refers. For
example, the statement ς3 “In the meantime, the financial department takes care of the
payment”, does not specify to what activities “meantime” refers. Consequently, the
source reference is empty (ε), as indicated in Table 5.2. Statements with scope ambi-
guity typically occur in the context of parallelism and loops because such behavioral
patterns can be associated with textual references to groups of activities.

To automatically identify cases with scope ambiguity, we analyzed how existing
techniques for the generation of process models from textual descriptions handle par-
allelism and loops. These techniques generally use heuristics to identify and analyze
behavioral statements in a text. They build on predefined sets of indicators that pin-
point the different types of relations, e.g., “while” and “in the meantime” for parallel
or interleaving order relations and “is repeated” for backward loops. Specifically, we
analyzed the set of indicators used by the state-of-the-art technique from [99]. In this
analysis, we isolated a subset of the parallelism indicators employed by the technique
that typically result in statements with scope ambiguity. These indicators are presented
in Table 5.3. What these indicators have in common is that their usage does not al-
low for the specification of a scope of the statement, i.e., these indicators cannot be
associated with a source reference at all. Consider, for example, the sentence “In the
meantime, the financial department takes care of the payment”. It is syntactically not
possible to specify to which set of activities a statement with in the meantime refers. By
contrast, if we replace this construct with a non-ambiguous indicator, from the second
set in Table 5.3, this problem can be avoided. For example, the indicator “while” can
be used to specify the scope of the statement, e.g., “While the claim is being archived.”
By observing the usage of such ambiguous indicators, we can identify statements with
scope ambiguity (line 13 of Algorithm 1) and generate interpretations for them (lines
14–21).

Table 5.3: Parallel indicators used in [99] and their classification

Class Contents

Unambiguous while, as well as, in parallel to
Ambiguous meanwhile, concurrently, meantime, in the meantime

CHAPTER 5. DEALING WITH AMBIGUOUS TEXTUAL DESCRIPTIONS 87

Although statements with scope ambiguity are highly problematic since they refer
to an unknown set of activities, we can still identify a set of possible meanings for
them. In particular, we can utilize the knowledge that statements such as “the previous
steps” and “in the meantime” refer to distinct parts of a process. This means that the
set of activities to which these statements refer cannot be any arbitrary combination of
activities. The activities in the set must rather have a certain commonality, such as a set
of activities that are all executed by the same person.

For this reason, we generate interpretations for statements with scope ambiguity
based on sets of activities that have a certain common attribute. In particular, given
a textual process description, we can identify sets of subsequently described activities
that are (i) performed by the same resource, (ii) performed on or with the same (busi-
ness) object, or (iii) are part of the same control-flow construct (e.g., a choice in the
process). Based on this, we obtain different interpretations for the statement ς3. In
this statement, “in the meantime” can refer to different moments when the financial de-
partment can start taking care of the payment. This results in three possible statement
interpretations, each with a different commonality:

1. Common resource: While the claims officer, the last described resource, is per-
forming its tasks, after a senior claims officer has accepted the claim, i.e., in
parallel to {a11, a12, a13};

2. Common object: While activities are being performed on the last mentioned
business object (the claim), i.e., in parallel to {a13};

3. Last control-flow construct: While the last mentioned activity before the state-
ment is being executed, i.e., in parallel to {a13}.

These three possibilities result in three sets of relations that can follow from the
same behavioral statement. Lines 14–21 describe the generation of a statement inter-
pretation for each of the three sets of activities.

5.2.3 Generating a Behavioral Space
Using the interpretations of individual statements as a basis, we can construct views
on the full process behavior described in a textual description. We refer to a specific
view as a process interpretation. A process interpretation for a text T follows from
the selection of a single statement interpretation for each statement ς in the set of
behavioral statements S. We define a process interpretation as given in Definition 5.2.

Definition 5.2 (Process Interpretation). Let T be a textual process description, AT the
set of activities described in T , S the set of behavioral statements in T with Γs the
set of statement interpretations of a statement ς ∈ S, and R = { , −1,+, ||} the
set of behavioral profile relations. We then define a process interpretation as a tuple
P = (I, BP), with:

• I: a complete set of interpretations consisting of a single statement interpreta-
tion γ ∈ Γς for each statement ς ∈ S, formally the following constraint holds:
∀ς ∈ S : |I ∩ Γς | = 1;
• BP : AT × AT → R a function that assigns a behavioral profile relation from R

to each pair of activities from AT .

88 5.2. CAPTURING AMBIGUITY USING BEHAVIORAL SPACES

a1 a2 a3 . . . an

a1

a2

a3

...

an

+

f

f

f

||

+

||

...
f

||

+

f . . .

||

||

...

+

a1 a2 a3 . . . an

a1

a2

a3

...

an

+

f

f

f

+

||

f

||

+

f

...

+
. . .

Pm

P2

P1

Figure 5.3: A behavioral space as a collection of m process interpretations

Recognize that in Definition 5.2 any activity relation that follows from a function
γ ∈ I is part of BP, but that the reverse does not necessarily hold. BP defines a
complete behavioral profile based on the interpretations included in I, which includes
relations that follow from the transitivity of the strict order and interleaving order re-
lations [255]. For instance let γ1 ∈ I be a statement interpretation that establishes the
relation a b and let γ2 ∈ I be a statement interpretation that establishes b c.
Then, BP will include the relation a c that follows due to transitivity2, even though
this relation is not part of any statement interpretation in I. Despite the overlap be-
tween them, we include I alongside BP in Definition 5.2. This is done in order to
preserve traceability between the obtained process behavior described by BP and the
statement interpretation in I that provided the foundation for BP. As such, we can
use this traceability to provide more useful diagnostic results when performing confor-
mance checks.

A textual process description without ambiguity has exactly one process interpreta-
tion. For a textual process description T with behavioral ambiguity, the set of process
interpretations in a behavioral space follows naturally as the set of possible combina-
tions of statement interpretations for the ambiguous statements. For example, a text
with two ambiguous behavioral statements ςi and ς j with, respectively, two and three
different statement interpretations, will yield a set of 2 × 3 = 6 process interpretations.
The concept of a behavioral space captures this spectrum of possible interpretations
for a single process. Figure 5.3 visualizes this by depicting a three-dimensional view
on the behavioral relations that exist between the activities in an ambiguous textual
description. Definition 5.3 provides the formal definition of a behavioral space.

Definition 5.3 (Behavioral Space). Let T be a textual process description and S the
set of behavioral statements in T . We define a behavioral space BS as a set of process
interpretations of the textual process description T over the behavioral statements in

2Note that this only applies if no interpretation γ ∈ I denotes a (different) relation between activities a
and c.

CHAPTER 5. DEALING WITH AMBIGUOUS TEXTUAL DESCRIPTIONS 89

S.

Algorithm 2 presents an algorithm to generate a behavioral space based on the state-
ment interpretations obtained in the previous step of our approach. A behavioral space
should contain all possible combinations of statement interpretations for the behavioral
statements. Lines 3–14 in Algorithm 2 describe the creation of these combinations. The
underlying idea is that all existing text interpretations, starting from an empty list (line
3), are incrementally extended with a single statement interpretation (lines 8–11). This
ensures that each possible combination of statement interpretations is included in the
list. For example, as considered in the previous section, the claims handling process
contains three ambiguous statements with, respectively, two, three, and two possible
interpretations. This results in a total number of 12 (2 × 3 × 2) possible combinations
of the statement interpretations and, thus, of 12 interpretations in BS . After all com-
binations have been generated, we compute a full behavioral profile for each of the
interpretations and add them to the behavioral space (lines 15–17).

Algorithm 2 Generate a behavioral space from a textual process description
1: function constructBehavioralSpace(Text text)
2: BehavioralSpace behavioralSpace = new BehavioralSpace();
3: List processInterpretations = new List();
4: processInterpretations.add(new ProcessInterpretation());
5: List newProcessInterpretations = new List();
6: for Statement s ∈ text.getStatements() do
7: List interpretations = computeStatementInterpretations(s);
8: for Interpretation i ∈ interpretations do
9: for ProcessInterpretation pi ∈ processInterpretations do

10: Interpretation newPI = pi.copy();
11: newPI.add(i);
12: newProcessInterpretations.add(newPI)
13: interpretations = newInterpretations.copy();
14: newInterpretations.clear();
15: for ProcessInterpretation pi ∈ interpretations do
16: computeFullBehavioralProfile(pi)
17: if pi.getBehavioralProfile().isConsistent() then
18: behavioralSpace.add(pi);
19: return behavioralSpace;

To compute the complete behavioral profile for a process interpretation (line 16),
we exploit the transitivity of the strict order and interleaving order relations [255]. In
this way, we can obtain relations beyond those pair-wise relations that we extracted
from a textual description. For example, if a text specifies that activity ai is followed
by a j and a j is followed by ak, i.e. ai a j and a j ak, then ai is also followed
by ak, i.e., ai ak. In lines 17 of the algorithm, we employ a technique defined
by Smirnov et al. [255] to check the internal consistency of the obtained behavioral
profile. We only include mutually consistent process interpretations to the behavioral
space (line 18). For example, we exclude obviously incorrect interpretations in which
one statement interpretation yields the relation ai a j and another the relation ai +a j.

90 5.3. CONFORMANCE CHECKING USING BEHAVIORAL SPACES

Once the process interpretations have been obtained in this manner, the construction
of the behavioral space is complete. The generated behavioral space can be used to
obtained trustworthy conformance-checking results, despite the presence of behavioral
ambiguity. Section 5.3 describes this.

5.3 Conformance Checking using Behavioral Spaces
By capturing behavioral ambiguity in a structured manner, behavioral spaces allow us
to reason about process conformance without the need to arbitrarily settle ambiguity.
In this section, we demonstrate this by showing how to perform a conformance check
of an execution trace versus a behavioral space generated from a textual process de-
scription. This conformance check is highly similar to the one presented in Chapter 4,
which performs a conformance check in the context of uncertain event-to-activity map-
pings. The key difference between traditional conformance checking and conformance
checking using behavioral spaces lies in the potential outcomes of a check. In tradi-
tional conformance checking, a trace is either conforming or it is non-conforming with
a business process. Due to the behavioral ambiguity captured in behavioral spaces,
a trace can be conforming or non-conforming, but also potentially conforming with a
behavioral space. The latter outcome occurs for traces that conform to one or more
process interpretations in a behavioral space, but not with all of them.

To determine the level of conformance between a trace and a behavioral space, we
consider the number of process interpretations of a textual process description to which
a trace conforms. In particular, we quantify the support of a behavioral space BS for
a trace σ as the ratio between the number of interpretations to which σ conforms and
the total number of interpretations in BS :

supp(σ, BS) =
|{P ∈ BS | con f (σ, P)}|

|BS |
(5.1)

In Equation 5.1, we use con f (σ, P) to denote that a trace σ conforms to process
interpretation P. Given that a process interpretation is defined based on behavioral
profile relations, this conformance check involves the comparison of the behavioral
profile relations of trace σ to the behavioral profile relations of P. This is achieved
based on the conformance checking method described in [282]. The support metric
supp(σ, BS) quantifies the fraction of interpretations in BS that allow for a trace σ to
occur. A support value of 1.0 indicates that a trace is without any doubt conforming
with the behavioral space, i.e., independent of the chosen interpretation. A support of
0.0 shows that there is no interpretation under which a trace conforms to the behavioral
space. Therefore, it can be said with certainty that the trace is non-conforming with
BS . Finally, any trace σ with a support value 0.0 < supp(σ, BS) < 1.0 is potentially
conforming with BS . This implies that there are certain interpretations of the textual
description to which the trace conforms. To illustrate the usefulness of the support
metric, consider the following three partial execution traces of the running example:

• σ1 = 〈a1, a2, a3, a4, a5〉

• σ2 = 〈a1, a3, a2, a4, a5〉

• σ3 = 〈a11, a14, a12, a13〉

CHAPTER 5. DEALING WITH AMBIGUOUS TEXTUAL DESCRIPTIONS 91

The difference between the traces σ1 and σ2 is that, in σ1, activity a2 occurs before
a3, whereas these are executed in reverse order in σ2, i.e., a2 a3 ∈ BPσ1 and a3
a2 ∈ BPσ2 . Furthermore, recall that the behavioral relation between these two activities
is given by the ambiguous behavioral statement ς2. Depending on the interpretation of
ς2, there either exists a strict order or an interleaving order relation between a2 and a3,
i.e., R(a2, a3) = { , ||}. The relation a2 σ1 a3 from σ1 is subsumed by both possible
interpretations included in the behavioral space, since sub(,) and sub(, ||) are
both satisfied. Therefore, σ1 is conforming with all interpretations in BS and, thus, has
a support value of 1.0. For trace σ2 we observe a different situation. While a3 σ2 a2
in trace σ2 is subsumed by relation a2 || a3, this relation is not subsumed by a2 a3.
Therefore, σ2 does not conform to half of the process interpretations in BS . This results
in supp(σ2, BS) = 0.5.

Aside from providing information on the process interpretations with which a trace
conforms, behavioral spaces allow us to obtain further diagnostic information from this
conformance check. In particular, we can gain insights into the conditions under which
a trace is conforming with a process description. For example, we can learn under
which interpretations of the statement ς3, “In the meantime, the financial department
takes care of the payment”, traceσ3 is conforming. Inσ3, the financial department pays
the settlement amount (a14) before the claims officer records the settlement information
(a12). This conforms to one of the two interpretations of statement ς3 and, therefore,
results in a support value of 0.5. Furthermore, we know that this trace is conforming, if
and only if “in the meantime” means “while the claims officer is performing its tasks”
and not “while the claims officer is archiving the claim”. Such diagnostic information
can be useful when interpreting the support values for a trace or when aiming to resolve
the ambiguity contained in a textual description.

5.4 Pruning Behavioral Spaces based on Information
Gain

This section demonstrates how the behavioral space of a textual process description
can be reduced to provide more accurate conformance-checking results. We refer to
this act as pruning a behavioral space. In particular, we present a technique that sup-
ports users in resolving behavioral ambiguity in an efficient manner. The technique
identifies those ambiguous behavioral statements in a textual description that have the
biggest impact on the ambiguity in a process. To achieve this, we define an information
gain metric. This metric quantifies the level of uncertainty in conformance-checking
results caused by an ambiguous behavioral statement. It serves a similar purpose as the
information gain metric used in the context of decision trees to quantify reductions in
information entropy (cf. [222, 240]). Before introducing the information gain metric,
we first consider how conformance-checking uncertainty can be reduced by resolving
ambiguous statements and, thereby, pruning a behavioral space.

92 5.4. PRUNING BEHAVIORAL SPACES BASED ON INFORMATION GAIN

5.4.1 Conformance-Checking Uncertainty

In Section 5.3, we demonstrated that behavioral spaces allow for reasoning about con-
formance without the need to resolve behavioral ambiguity. This is achieved by intro-
ducing the notion of potential conformance, which captures situations where a trace
is conforming to some process interpretations, but non-conforming to others. Such a
classification provides valuable information, especially in the context of the diagnostic
information that can be associated with it, i.e., for which statement interpretations a
trace is conforming or non-conforming. Still, such cases represent a form of unclar-
ity in the conformance-checking results, because it is not known if a trace is actually
conforming or not. We will refer to this state as conformance-checking uncertainty.

The accuracy of conformance-checking results can be improved by reducing the
level of conformance-checking uncertainty. This can be achieved by resolving the
cause of ambiguity in ambiguous statements. For instance, by replacing an ambiguous
type indicator such as “and” with either “and, then” or with “and, meanwhile”. In these
cases, there are less potentially conforming traces and more traces for which it can be
stated with certainty that they are conforming or not. Behavioral spaces represent a
powerful tool to support users in this endeavor. First, behavioral spaces support the
improvement of conformance checking accuracy by providing insights into the causes
(i.e., the ambiguous statements) and the effects (i.e., the different interpretations) of be-
havioral ambiguity. For instance, the behavioral space shows us that statement s2 from
the running example is ambiguous. Therefore, it is clear that if a user decides to re-
solve this ambiguity by selecting the correct interpretation of s2, we reduce the overall
conformance-checking uncertainty. Second, behavioral spaces can support users even
further by letting them focus their resolution efforts on the ambiguous statements that
are the greatest causes of conformance-checking uncertainty. We achieve this with the
information-gain metric that we introduce next.

5.4.2 Information Gain

We introduce Information Gain (IG) as a metric that describes how much conformance-
checking uncertainty can be resolved by selecting a single interpretation for an ambigu-
ous statement. A proper quantification for this gain is to consider for how many traces
the interpretations of a single ambiguous statement disagree about their conformance.
By resolving the ambiguity in statements of which the interpretations disagree about
the largest number of traces, a maximum of conformance-checking uncertainty can be
removed. We define IG for a set of statement interpretations Γς and a set of traces (or
log) L in Equation 5.2.

IG(Γ, L) = |
⋃
γ∈Γ

CL(γ) −
⋂
γ∈Γ

CL(γ)| (5.2)

In this equation, we use CL(γ) to refer to the set of traces from L that are conforming
to the behavioral relations of γ. IG(Γ, L) specifies the size of the set of traces that
are conforming to at least one interpretation, but also non-conforming to at least one
interpretation. This is computed by taking all traces that are allowed according to at

CHAPTER 5. DEALING WITH AMBIGUOUS TEXTUAL DESCRIPTIONS 93

least one interpretation in Γ, i.e., the union of all sets CL(γ) for γ ∈ Γ, minus those
traces that are allowed by all interpretations in Γ, i.e., the intersection of these sets.

The metric IG can be applied in two different ways, depending on the availabil-
ity of an event log. If an event log is not available, a log LG can be generated that
contains all traces that are potentially conforming to the behavioral space BS . In this
case, IG(Γ, LG) can be used to identify those phrases that lead to the biggest potential
reduction in ambiguity. However, if an event log LR related to the process is already
available, the information gain metric can be used to compute the information gain in
the context of truly observed behavior. In this case, IG(Γ, LR) represents the gain in
ambiguity specific to the event log LR.

To illustrate the usage of IG, consider the statements ς2 and ς3 used throughout
this chapter (introduced in Table 5.2), on the one hand, and a log L with the following
(partial) execution traces, on the other:

• σ1 = 〈a2, a3, a12, a13, a14〉

• σ2 = 〈a2, a3, a14, a12, a13〉

• σ3 = 〈a2, a3, a14, a12, a13〉

• σ4 = 〈a3, a2, a14, a13, a12〉

Recall that statement ς2 has two interpretations, with the following sets of behav-
ioral relations: {a2 a3} and {a2 || a3}. It can be easily observed that these statements
disagree about any trace in which a3 occurs before a2, i.e. of which the behavioral
profile contains a3 t a2. Trace σ4 is the only trace in L for which this is the case.
Therefore, IG(Γs2 , L) = 1. To compute IG for statement ς3, it suffices to consider the
most restrictive and most flexible interpretations of the statement. The most restrictive
interpretation states that a14 can only be executed in parallel, i.e., possibly before, ac-
tivity a13. By contrast, the most flexible interpretation of ς3 specifies that a14 is in an
interleaving order with a11, a12, and a13. This means that from log L, only trace σ1 is
conforming to the former interpretation, whereas all four traces are conforming to the
latter interpretation of ς3. Therefore, three traces in L are in dispute by the interpre-
tations in Γs3 , i.e. IG(Γs3 , L) = 3. From this, it can be concluded that the resolution
of ambiguity in statement ς3 has a greater impact on the ambiguity in log L than the
resolution of ς2.

By computing IG for all ambiguous statements in a behavioral space and resolving
the statements with the highest information gain, users can efficiently reduce the level
of conformance-checking uncertainty. As such, the behavioral space will be pruned
by removing process interpretations that are not conforming with the resolved ambi-
guity. This greatly enhances the efficient usage of the notion of behavioral spaces for
conformance checking.

5.5 Evaluation
In this section, we evaluate the usefulness of behavioral spaces for conformance check-
ing in the context of ambiguous textual process descriptions. For this purpose, we
conduct a two-stage evaluation. First, we assess the impact that the consideration of
behavioral spaces has on conformance-checking results. In particular, we compare the

94 5.5. EVALUATION

conformance-checking results obtained by using behavioral spaces to two alternative
ways of dealing with behavioral ambiguity. Second, we demonstrate the effectiveness
of the proposed IG metric for the reduction of uncertainty in conformance-checking
results.

In the remainder, Section 5.5.1 first introduces the test collection used in both parts
of the evaluation. Then, Sections 5.5.2 and 5.5.3 respectively describe the evaluation
of the conformance-checking results and of the IG metric.

5.5.1 Test Collection

To perform our evaluation, we reuse the collection of textual process descriptions from
the text-to-model generation approach by Friedrich et al. [99]. The collection contains
47 process descriptions from various industrial and scholarly sources. These textual
descriptions were also used in the evaluation described in Chapter 3. Table 5.4 gives
an overview of the characteristics of the test collection.

Table 5.4: Overview of the test collection

ID Source Type T S W

1 HU Berlin Academic 4 10.0 18.1
2 TU Berlin Academic 2 34.0 21.2
3 QUT Academic 8 6.1 18.3
4 TU Eindhoven Academic 1 40.0 18.5
5 Vendor Tutorials Industry 4 9.0 18.2
6 inubit AG Industry 4 11.5 18.4
7 BPM Practitioners Industry 1 7.0 9.7
8 BPMN Practice Handbook Textbook 3 4.7 17.0
9 BPMN Guide Textbook 6 7.0 20.8

10 Federal Network Agency Public Sector 14 6.4 20.0

Total 47 9.2 17.2

Legend: T = Number of textual process descriptions, S = Sen-
tences per text (avg.), W = Words per sentence (avg.)

The data from Table 5.4 illustrate that the included process descriptions differ
greatly in size. The average number of sentences ranges from 4.7 to 34.0. The longest
process description contains a total of 40 sentences. Furthermore, the descriptions dif-
fer in the average length of the sentences. While the BPM Practitioners source contains
process descriptions with rather short sentences (9.7 words), the process descriptions
from the TU Berlin source contain relatively long sentences (21.2 words). Lastly, the
process descriptions differ in terms of how explicitly and unambiguously they describe
the process behavior. Among others, this results from the variety of authors that cre-
ated the textual descriptions. Hence, we believe that the collection is well-suited for
achieving a reasonably high external validity of the results.

CHAPTER 5. DEALING WITH AMBIGUOUS TEXTUAL DESCRIPTIONS 95

5.5.2 Conformance Evaluation
To demonstrate the usefulness of behavioral spaces for conformance checking, we
compare the conformance-checking results obtained by using behavioral spaces to two
alternative ways of dealing with behavioral ambiguity. These two alternatives are: (i)
imposing assumptions on the correct interpretation of behavioral statements, and (ii)
ignoring ambiguous statements because they cannot be resolved. The goal of this part
of the evaluation is to show that behavioral spaces provide a much more reasonable
view on the process behavior allowed by a textual process description, when compared
to the two alternatives. We first describe the details of the setup used for this part of the
evaluation and then present and discuss the results.

Setup

To conduct the evaluation, we implemented a prototype to generate behavioral spaces
from textual process descriptions. To achieve this, we build on the state-of-the-art
text-to-process model generation approach by Friedrich et al. [99]. In particular, our
Java prototype uses a library that is part of the RefMod-Miner3, which implements the
process model generation approach in a stand-alone tool. We use the library to auto-
matically identify activities and extract behavioral profile relations that exist between
activities.

We compare the conformance-checking results obtained by using behavioral spaces
to two alternative ways of dealing with behavioral ambiguity. The first alternative re-
flects the possibility to deal with behavioral ambiguity by imposing assumptions on the
correct interpretation of a text, i.e., by selecting a single interpretation for each ambigu-
ous behavioral statement. Second, it is possible to deal with behavioral ambiguity by
ignoring all ambiguous statements and, thus, only focusing on the behavioral relations
that can be extracted with certainty from a text. Given these alternatives to behavioral
spaces, we generate three behavioral models (BMs) for each of the 47 textual process
descriptions as follows:

1. Fully interpreted behavioral profile (BPfull): This behavioral model reflects an
approach that imposes assumptions on the correct interpretation of ambiguous
statements. To obtain BP f ull, we generate a process model by using the text-to-
model generation approach from [99] and, subsequently, extracting a behavioral
profile from this model;

2. Minimally restricted behavioral profile (BPmin): This behavioral model re-
flects an approach in which ambiguous statements are fully ignored. The result-
ing behavioral profile only captures the behavioral relations that can be extracted
with certainty from the textual process description. To obtain BPmin, we remove
all behavioral profile relations from BP f ull that were extracted from the analysis
of ambiguous behavioral statements;

3. Behavioral space (BS): The behavioral space generated for the textual descrip-
tion in accordance with the interpretation generation method described in Sec-
tion 5.2.

3http://refmod-miner.dfki.de

96 5.5. EVALUATION

We conduct our evaluation by comparing the sizes of the sets of traces that are
(potentially) conforming with the three behavioral models, in accordance with the def-
initions provided in Section 5.3.4 Using C(BM) to refer to the collection of traces that
are conforming or potentially conforming to a behavioral model BM, we quantify the
size differences using the following two metrics:

R1 =
| C(BS) |
| C(BPmin) |

(5.3) R2 =
| C(BP f ull)) |
| C(BS) |

(5.4)

R1 quantifies the ratio between the number of traces allowed by a behavioral space
and a minimally restricted behavioral profile. This measure reflects how much behav-
ior that certainly does not conform to σ is allowed when ambiguous statements are
ignored. R2 quantifies the ratio between the number of traces allowed by a behavioral
space and those allowed by a fully interpreted behavioral profile. This measure reflects
how much behavior that is possibly conforming to σ is marked as nonconforming by
an approach that imposes assumptions on ambiguous statements.

Results

Table 5.5 summarizes the evaluation results. The first interesting thing to note is how
common textual process descriptions with behavioral ambiguity are. In total, 32 of the
47 textual process descriptions (70%) contained one or more ambiguous phrases. The
majority of these cases, 28 in total, included just phrases with type ambiguity. Four
cases contain statements with scope ambiguity, 3 of which also contain behavioral
statements with type ambiguity.

Table 5.5: Evaluation results

Collection T Stype Sscope A BS R1 R2

Only type ambiguity 28 64 0 19.6 11.0 100.0% 37.8%
With scope ambiguity 4 13 4 24.0 76.5 16.4% 0.5%

Total 32 77 4 20.2 19.1 89.5% 33.7%

Legend: T = number of textual process descriptions, Stype = statements
with type ambiguity, Sscope = statements with scope ambiguity, A = ex-
tracted activities per process (avg.), BS = interpretations per behavioral
space.

For processes with just type ambiguity in their descriptions, there is a clear differ-
ence between the behavior allowed by fully interpreted behavioral profiles C(BP f ull)
and the behavior allowed by behavioral spaces C(BS). As indicated by metric R2, the
fully interpreted behavioral profiles allow for only 37.8% of the behavior allowed by

4For processes that contain loops, we only include traces with at most one repetition.

CHAPTER 5. DEALING WITH AMBIGUOUS TEXTUAL DESCRIPTIONS 97

the behavioral space. For the remaining 62.2% of the traces, we cannot state with cer-
tainty that they do not conform to the process described in the text. This difference
results from ordering restrictions that the text-to-model generation algorithm imposes
on activities, even when these ordering restrictions may not exist. Behavioral spaces
do not impose such restrictions and, thus, mark traces that exhibit such execution flex-
ibility as potentially conforming. This consideration of the cases with type ambiguity
already illustrates the impact of assumptions on conformance checking. Nevertheless,
this impact is much more severe for textual process descriptions that also contain state-
ments with scope ambiguity.

Legend:
C(BP f ull)
C(BS)
C(BPmin)

Figure 5.4: Visualization of three sets of conforming traces for cases with scope ambi-
guity

The behavioral models for the 4 cases with scope ambiguity show much larger dif-
ferences among the behavior they allow. We visualize the relative sizes of the three
sets of conforming traces in Figure 5.4. The light-gray area denotes the set of traces
conforming with BPmin, i.e., the set of traces that remain when treating ambiguous
statements as undecidable. The behavior allowed by the behavioral space, represented
by the dark-gray area, is considerably smaller, as also indicated by the R1 score of
16.4%. This number reveals that 83.6% of the traces in C(BPmin) are not conforming
with any reasonable interpretation of the statements with scope ambiguity. Figure 5.4
also shows the considerable impact that the usage of single interpretations has on the
number of conforming traces. The tiny size of the black area in the figure and the
R2 score of 0.5% both indicate that, for the cases with scope ambiguity, the fully in-
terpreted behavior profiles allow for only a very small fraction of the behavior that
is (potentially) conforming to a behavioral space. Again, the remaining 99.5% repre-
sent traces that do not necessarily conflict with behavior specified in a textual process
description.

The evaluation results show the impact both of ignoring ambiguous statements and
of imposing single interpretations on them. As visualized by Figure 5.4, behavioral
spaces provide a balance between these loosely restricted and overly restricted behav-
ioral models. In summary, behavioral spaces exclude a large number of nonsensi-
cal traces, which can be excluded by generating proper interpretations for ambiguous
statements. Still, they allow for many more traces than the restricted models that are

98 5.5. EVALUATION

obtained by imposing assumptions on the ambiguous statements in textual descriptions.

5.5.3 Pruning Evaluation

In the second part of the evaluation, we set out to demonstrate how effective the pro-
posed pruning technique is at reducing uncertainty in conformance-checking results.
Specifically, we assess how quickly conformance uncertainty can be reduced when we
employ the IG metric, introduced in Section 5.4, to select ambiguous phrases. As
a benchmark, we compare the results obtained in this manner to a random selection
mechanism. We first describe the details of the setup used for this part of the evalua-
tion and then present and discuss the results.

Setup

To evaluate the effectiveness of the IG metric, we make use of the behavioral spaces
generated for the textual descriptions in the previous part of the evaluation. Specifi-
cally, we select the behavioral spaces for the 17 textual descriptions with more than
one ambiguous behavioral statement. For these cases it is relevant to determine which
ambiguous phrase should be resolved first. To compute values for the IG metric, we
generate a log Lt for each textual description T that contains all traces that are poten-
tially conforming to the behavioral space BS .

In this evaluation, we are interested in how much we can reduce conformance-
checking uncertainty by using IG to select the ambiguous phrases we resolve first. We
quantify this reduction by comparing the number of potentially conforming traces that
remain after resolving the ambiguity in a statement to the original number of potentially
conforming traces. Again, we use C(BS) to denote the set of potentially conforming
traces for a given behavioral space BS . Then, we compute the fraction of confor-
mance uncertainty that remains after resolving k ambiguous statements as given by
Equation 5.5. Here, BS k represents the behavioral space that remains after resolving k
ambiguous statements. BS 0 represents the behavioral space for which no ambiguity is
resolved.

U(BS , k) =
|C(BS k)|
|C(BS 0)|

(5.5)

We compute the value U(BS , k) for each k ∈ 1, . . . , n, where n is the number of
ambiguous statements in BS . As a benchmark, we compare these values against the
uncertainty that remains after randomly selecting ambiguous statements to resolve. In
particular, we compute the average value of U(BS , k) for each of the n! different orders
in which ambiguous statements can potentially be selected. As such, this benchmark
mimics the situation in which people blindly select ambiguous statements to resolve.

Results

Figure 5.5 visualizes the evaluation results. The curves represent the average reduction
in uncertainty over the 17 relevant cases. The figure shows considerable differences

CHAPTER 5. DEALING WITH AMBIGUOUS TEXTUAL DESCRIPTIONS 99

50%

60%

70%

80%

90%

100%

1 2 3 4 5+

U
nc

er
ta

in
ty

 re
so

lv
ed

of ambiguous statements resolved

max. IG
random

Figure 5.5: Comparison of uncertainty resolution using max. IG and random selection

between the reduction obtained by using the information gain metric versus the reduc-
tions obtained through random selection.

When interpreting these results, it is important to recognize that the minimum un-
certainty reduction per statement observed in the test collection is 50.0%. This quantity
represents the amount of uncertainty that is removed when resolving the most simple
form of an ambiguous statement: a statement with type ambiguity between just two
activities. Therefore, the reduction of 63.7% that is obtained by randomly resolving a
single ambiguous statement appears is only 13.7% higher than the minimum improve-
ment per statement. In comparison, usage of the IG metric results in a removal of
79.7% of the conformance-checking uncertainty in the first step. This reflects an im-
provement of 29.7 percentage points above the minimum improvement per statement.
Therefore, the IG metric leads to an improvement that is more than twice as high as
random selection.

The 79.7% reduction in uncertainty demonstrates that, in many textual descrip-
tions, a single statement has a much bigger impact on the ambiguity than the others.
These statements are typically the ones with scope ambiguity. This is the case because
scope ambiguity results in a high number of potentially conforming traces, usually
caused by interpretations with a considerable number of activities with interleaving or-
der relations. This is, for instance, shown for statement ς3 considered in the running
example of this chapter. Similarly, statements with type ambiguity among more than
two activities result in an increased number of interleaving order relations compared
to statements with ambiguity between just two activities. Therefore, these statements
result in a high number of potentially conforming traces. By resolving these ambigu-
ous statements first, the information gain metric can be used to quickly resolve the vast
majority of conformance-checking uncertainty.

100 5.6. LIMITATIONS

5.6 Limitations

Our evaluation demonstrates the usefulness of behavioral spaces for reasoning about
process conformance in the context of textual process descriptions. However, the eval-
uation results should be considered against the backdrop of some limitations. In par-
ticular, we are able to identify limitations related to the behavioral space generation
approach, the conformance-checking technique, and related to the evaluation.

Limitations related to the generation approach concern two facets. First, it has to
be considered that the natural language processing techniques on which we build our
approach are not fully accurate. The model generation approach from [99] is heuristics-
based, which means it does not cover all possible linguistic patterns that can be used to
express behavioral relations. For instance, the approach cannot handle constructs cor-
responding to OR-gateways in process models, such as “At least two of the following
three activities should be performed”. Furthermore, the approach is not always able
to properly recognize backwards loops in process descriptions. However, since this
approach represents the state of the art, it does provide an accurate reflection of the
quality of model generation approaches. Also, it is important to stress that our genera-
tion approach is largely independent of the underlying model generation approach. As
long as this approach can provide information regarding source, relation type, and tar-
get references, behavioral spaces can be generated according to the algorithms detailed
in Section 5.3. Second, it has to be taken into account that we generate interpreta-
tions for statements with scope ambiguity based on three commonalities. While these
commonalities represent the plausible options in the context of process descriptions, it
is possible that, in certain situations, other properties are necessary to capture the set
of activities to which a statement refers. Still, the behavioral space will identify such
statements as ambiguous and help users to analyze the impact of this ambiguity on
conformance checks.

A point of consideration regarding our conformance-checking technique is that we
perform conformance checks based on behavioral profiles. The expressive power of
these relations has been shown to be less than that of process modeling notations such
as Petri nets, which are used by certain other conformance-checking techniques [15].
Because of this lack of expressive power, behavioral profiles abstract from certain
process behavior. As a result, conformance checking based on behavioral profiles is
less restrictive than conformance-checking techniques based on Petri nets. [216] pro-
vides a detailed overview of the restrictions on expressiveness. A particular weakness
in this regard relates to the handling of loops. When loops are present, behavioral
profile-based conformance checking is considerably less restrictive than other tech-
niques. However, as previously mentioned, these constructs are notoriously problem-
atic when parsing textual process descriptions. Therefore, it is important to be aware
of this limitation, but also to recognize its limited impact given the current state-of-the-
art text-to-model generation approaches. Nevertheless, we have selected behavioral
profiles because they enable highly efficient conformance checks, which is an impor-
tant prerequisite given the numerous possible process interpretations that can exist in
behavioral spaces. However, the primary reason is that the transitive property of be-
havioral profile relations allow us to combine the implications of different statement

CHAPTER 5. DEALING WITH AMBIGUOUS TEXTUAL DESCRIPTIONS 101

interpretations in an intuitive and safe manner.
Finally, the obtained evaluation results must be considered in light of the specifics

of the textual process descriptions included in the test collection. To mitigate the im-
pact of these specifics on the results, we composed the test collection from several
heterogeneous sources. As a result, the included descriptions contain a considerable
degree of ambiguity. Furthermore, this data set has been previously used to evaluate
the process model generation approach of Friedrich et al. [99]. Therefore, we are confi-
dent that our evaluation shows a realistic picture of the impact of behavioral ambiguity
in practical settings.

5.7 Related Work

The work presented in this chapter primarily relates to three major research streams:
conformance checking, the analysis of textual process descriptions and the representa-
tion of data uncertainty.

We previously provided an overview of conformance checking in Section 4.5, in-
cluding a variety of its application scenarios and existing techniques. What these ex-
isting techniques have in common is that they all compare observed behavior against
a structured process representation, such as a process model or business rules. The
technique presented in this chapter differs in this regard, because it is designed to work
with unstructured or semi-structured descriptions in natural language.

The relevance and widespread use of text documents as a source for process analy-
sis has been emphasized in various contexts [99,163,166,250]. The majority of works
that consider the analysis of textual artifacts related to business processes focus on
the automated derivation of process models from them. Respective techniques have
been designed for textual process descriptions [99, 108], group stories [111], use case
descriptions [253], and textual methodologies [270]. From these, the text-to-model
generation technique from Friedrich et al. [99] is typically recognized as the state of
the art [232]. Therefore, we used it as a basis for our own prototype and as a benchmark
for our evaluation. Though none of these existing works mentions the problem of be-
havioral ambiguity explicitly, all techniques impose assumptions on the interpretation
of ambiguous behavioral statements. This results in a single interpretation, i.e., a pro-
cess model, for any given text. However, this comes with the great disadvantage that
the behavior allowed by this representation is much stricter than the behavior specified
in the textual description.

Similar to behavioral ambiguity in textual process descriptions, ambiguous or un-
certain data is also present in other application contexts. In these cases, uncertainty can
be caused by, among others, data randomness, incompleteness, and limitations of mea-
suring equipment [210]. This has created a need for algorithms and applications for
uncertain data management [25]. As a result, the modeling of uncertain data has been
studied extensively (cf. [20, 126, 211, 246]). Our notion of a behavioral space builds
on concepts related to those used in uncertain data models. For instance, similar to the
behavioral interpretations captured in a behavioral space, the model presented by Das
Sarma et al. [246] uses a set of possible instances to represent the spectrum of possi-
ble interpretations for an uncertain relation. Furthermore, the model described in [20]

102 5.8. SUMMARY

uses conditions to capture dependencies between uncertain values. This notion has the
same result as the sets of behavioral relations that we derive from uncertain behavioral
statements and convert into different behavioral interpretations. Still, the technical as-
pects and application contexts of these uncertain data models, which mostly relate to
querying and data integration [25], differ considerably from the process-oriented view
of behavioral spaces.

5.8 Summary
In this chapter, we leveraged the concept of a behavioral space to deal with the ambi-
guity in textual process descriptions. A behavioral space captures all possible interpre-
tations of a textual process description. By using behavioral spaces for conformance
checking, we avoid the need to impose assumptions on the correct interpretations of
ambiguous natural language texts. Therefore, conformance checks based on behav-
ioral spaces provide trustworthy results: They avoid the risks associated with the se-
lection of incorrect interpretations. Furthermore, we demonstrated the usefulness of
behavioral spaces for the analysis of textual process descriptions. In particular, we
used a quantitative evaluation with a set of 47 textual process descriptions to illustrate
that a behavioral space strikes a reasonable balance between ignoring ambiguous state-
ments and imposing fixed interpretations on them. Furthermore, we demonstrated the
usefulness of a semi-automated pruning technique to quickly reduce the level of un-
certainty remaining in conformance-checking results. In particular, by considering the
information gain associated with the resolution of an ambiguous statement, the degree
of conformance-checking ambiguity can be reduced twice as fast as through random
selection.

6
Transforming and Aligning Process Performance

Indicators

Monitoring Process Performance Indicators (PPIs) represents an important prerequisite
for organizations in their strive for continuous process optimization [151]. Therefore,
a key task for managers is to define suitable PPIs that are aligned with the strategic
business objectives of the organization [233]. Typically, managers achieve this by de-
scribing relevant PPIs using natural language descriptions [235,286]. This has the great
advantage that PPIs can be easily specified and understood by all stakeholders [158].
However, to be able to actually monitor PPIs, they must be defined in a way that sup-
ports their automated computation and relates them to the technical implementation of
a business process in a Workflow Management or Enterprise Resource Planning Sys-
tem [96]. Although there are structured notations that achieve this (cf. [218,233,286]),
they are not at all similar to the unstructured natural language descriptions used and
preferred by managers.

Currently, the structured PPI definitions required to automatically monitor PPIs
can only be obtained by manually transforming unstructured natural language descrip-
tions [234]. Such a transformation requires considerable time and effort from a number
of resources. To illustrate the causes of this, consider the situation we observed during
our extensive research collaboration with the Andalusian Health Service [1, 235, 236].
There, the IT department received requests to measure PPIs for all organizational pro-
cesses, as specified by other departments in natural language. The IT department had to
manually establish SQL queries in order to compute the desired values for these PPIs.
In many cases, the necessary interactions between business and IT led to miscommuni-
cation. For example, as a result of misinterpretations or incomplete specifications, the
IT department often obtained incorrect PPI values. The time required to clear up these
differences was considerable. In the general case, this necessary effort is even more
problematic in light of the potentially vast size of process model repositories (possibly
containing hundreds or even thousands of models [237]) and because processes and
performance measures are subject to continuous change [280]. In sum, this makes the
task of manually transforming PPIs into a structured notation hardly manageable in

103

104 6.1. PROBLEM ILLUSTRATION

practice.
To overcome this problem, this chapter presents an approach to automatically trans-

late natural language PPI descriptions into PPIs that can be automatically monitored.
In the remainder of this chapter, Section 6.1 illustrates the challenges associated with
the transformation task. Section 6.2 defines templates that we use for the structured
notation of PPIs and that represent the output format for our approach. Section 6.3
describes the transformation approach itself. Section 6.4 presents a quantitative eval-
uation that demonstrates the approach’s usefulness. Section 6.5 reflects on the limita-
tions of our transformation approach and the evaluation. Section 6.6 discuss streams of
related research. Finally, Section 6.7 summarizes the chapter.

6.1 Problem Illustration
To illustrate the challenges associated with the transformation of natural language PPI
descriptions into a structured notation, consider the process model shown in Figure 6.1.
This figure depicts a simplified order handling process using BPMN. Table 6.1 pro-
vides six exemplary PPI descriptions related to this process. These descriptions use
linguistic patterns that are similar to those that have been observed in practice [235].IS ppi formalization

O
rd

er
 h

an
dl

in
g

de
pa

rt
m

en
t

Order handling department

Validate
order

Accept
order

Reject
order

Pick
products

Ship
products

Send
invoice order

handling
completed

order
received

Order

Customer

invoiceorder

Figure 6.1: Process model for an order handling process

Table 6.1: PPIs for the order handling example

ID Description

PPI1 Number of accepted orders.
PPI2 Average time between receipt and completion of an order.
PPI3 Average time to complete a received order.
PPI4 The percentage of rejected orders.
PPI5 The maximum time to transport an order.
PPI6 The total order amount per customer.

To actually compute values for these PPIs, the natural language descriptions must
be transformed into a structured notation. In some cases, this transformation is rela-
tively straightforward. For instance, it is clear that the description of PPI1 refers to the

CHAPTER 6. TRANSFORMING AND ALIGNING PPIS 105

Table 6.2: Example of a structured notation for PPI2

Slot Value

ID PPI2
Description Average time between receipt and completion of an order
Measure type time
Aggregation average
Start event Order received
End event Order completed

number of process instances for which the “Accept order” activity is executed. The
transformation of PPI2 is also relatively easy. For this PPI, we are interested in the
average time between the “order received” and “order handling completed” events.
Table 6.2 provides an example of how this PPI can be captured in a structured manner.
Here we use measure type and aggregation to specify that the PPI computes the average
time over process instances, whereas we use start event and end event to establish the
link between the PPI and the events of the process model depicted in Figure 6.1. How-
ever, in other cases, the automated transformation of a PPI description into a structured
definition is associated with considerable challenges. These challenges mainly relate
to the flexible and inherently ambiguous nature of natural language, as preferred by hu-
man users, but much less suitable for automated interpretation [182, 250]. We identify
three main challenges in this regard.

The first challenge to overcome is that natural language descriptions do not follow
a specific structure or notation. These descriptions can express the same PPI using a
broad variety of syntactic patterns [23]. PPI2 and PPI3, for instance, both refer to
the average time between the receipt and completion of an order. However, the two
PPI descriptions use clearly distinct patterns to describe this measure. PPI2 explicitly
refers to the start and end points of the measure in chronological order. By contrast,
PPI3 describes these two points in a reverse order, i.e., the end point “completed” is
described before the start point “received.”

The second challenge to overcome is that natural language PPI descriptions can
depend on implicit knowledge for their proper interpretation. Consider, for example,
PPI4: “The percentage of rejected orders”. This PPI refers to some fraction, where
the numerator refers to the number of process instances in which the “Reject order”
activity is executed. However, the PPI description does not specify the denominator
for this fraction, i.e., it is not clear from the description by what number this numerator
should be divided. Instead, the description depends on the implicit assumption that the
denominator, most likely, refers to the total number of received orders.

Lastly, the third challenge that a transformation approach must address are prob-
lems caused by differences in terminology between PPI descriptions and process mod-
els. For example, the description of PPI5 refers to the time it takes to “transport or-
ders”, whereas the process model refers to this action as “product shipment.” Such
differences occur in particular because PPIs and process models are generally defined
by different organizational stakeholders, with their own perspectives on a process.

106 6.2. TEMPLATE-BASED PPI DEFINITIONS

In summary, an automated transformation approach must be able to deal with (i) a
variety of syntactic patterns, (ii) partially implicit PPI descriptions, and (iii) differences
in terminology between description and model. The approach presented in this chapter
addresses these challenges. Before describing this approach in detail, we introduce so-
called templates, which represent the output required by an automated transformation
approach.

6.2 Template-Based PPI Definitions

This chapter focuses on the transformation of natural language PPI descriptions into
ones that follow a structured notation, which allows for their automated monitoring.
This requires us to first define a structured notation into which we aim to transform
the unstructured descriptions. We define this structured notation in the form of PPI
templates. Each PPI template captures the different concepts of a PPI definition that
are required for its automated computation. We refer to the placeholder of each con-
cept in the template as a slot, to which a value, a so-called slot filler, must be assigned
when defining a PPI. For the definition of these templates, we build on the PPINOT
metamodel, introduced in [235]. We selected this metamodel because of its high de-
gree of expressiveness and because it explicitly establishes links to process model el-
ements. Due to these links, the PPINOT metamodel can be used to define structured
PPIs whose values can be computed in an automated manner. Specifically, we base
the templates for our approach on the templates and associated linguistic structures de-
fined in [236]. In Section 6.2.1, we introduce the slots that correspond to the different
semantic concepts that constitute the PPI templates. Section 6.2.2 describes the value
domains associated with these slots.

6.2.1 Template Slots
We define four different PPI templates, each corresponding to a different type of mea-
sure that can underly a PPI: numerical, temporal, data-based, and fractional PPIs.
These templates can capture the vast majority of PPIs that have been observed in empir-
ical studies [234, 235]. Table 6.3 presents the four templates and provides an example
for each of them.

Aside from an identifier and the natural language description, all of the templates
capture four distinct semantic concepts, as illustrated by Figure 6.2: (i) measure type,
(ii) aggregation function, (iii) group-by property, and (iv) one or more process concepts.
The first three semantic concepts together characterize the measure of a PPI. The fourth
concept links components of the PPI to the actual implementation of a business process.
We now elaborate on these semantic concepts.

Measure type. The measure type classifies the nature of the measure underlying a
PPI. In this work, we focus on the four most common measure types according to [236]:
count, time, data, and fraction measures. A count PPI measures the number of times
something happens. For instance, PPI1 measures the number of orders that are ac-
cepted. Time measures consider the duration between two instants, i.e., the start or

CHAPTER 6. TRANSFORMING AND ALIGNING PPIS 107

Table 6.3: PPI templates and examples

Slot Value Slot Value

ID PPI1 ID PPI2
Description Number of accepted orders Description Average time between re-

ceipt and completion of an
order

Measure type count Measure type time
Aggregation sum Aggregation average
Counted event Accept order [completed] Start event Order received
Group-by — End event Order completed

Group-by —

ID PPI4 ID PPI6
Description The percentage of rejected

orders
Description The total order amount per

customer.
Measure type fraction Measure type data
Aggregation sum Aggregation sum
Numerator Reject order [completed] Measured attr. Order [amount]
Denominator Order received Group-by customer
Group-by —

PPI
template

Measure
Type

Aggregation
function

Group-by
property

Process
concept

1 0..1 0..1 1..*

Activity state
change

Event
occurrence

Data attribute
value

Figure 6.2: Semantic concepts in a PPI definition

108 6.2. TEMPLATE-BASED PPI DEFINITIONS

completion of an activity or the execution of an event. PPI2 and PPI3 represent exam-
ples of such time measures. Data measures consider the attribute values of data objects,
as seen for PPI6, which sums the amounts associated with “order” data objects. Fi-
nally, fraction measures divide the value of one measure by another. For example, PPI4
divides the number of rejected orders by the number of received orders.

Aggregation function. Aggregation functions are used to aggregate the values of
multiple process instances using a specific metric. For example, PPI2 and PPI3 con-
sider the average time of individual order handling instances, whereas PPI5 considers
the maximum time it takes to transport an order. Note that the aggregation function is
an optional slot in the templates; it is not necessary to specify it for every measure.

Group-by property. Group-by properties can be applied on measures with an ag-
gregation function in order to compute a value aggregated over those process instances
that have a certain property. These properties can be based on data attributes or on
resources that are involved in the execution of a process instance. For example, PPI6
requires a group-by property to determine the total order amounts per customer. A
group-by property is an optional slot in a PPI template. If no such property is defined,
the aggregated measure is simply applied on all process instances.

Process concepts. A process concept refers to a value or an occurrence during the
execution of a business process that is relevant to the computation of a PPI. As shown
in Figure 6.2, process concepts can refer to different things in the context of a PPI
template. For instance, an activity is started, a process model event occurs, or the value
of a data attribute changes. Each PPI template has one or more slots associated with
process concepts. The exact number and the semantics of these slots differ per measure
type. In particular, we define the following semantic roles for the different measure
types:

• count measure: counted event;
• time measure: start event, end event;
• data measure: measured attribute;
• fraction measure: numerator, denominator.

Each of the semantic roles associated with a particular measure type should be filled
with at least one process concept. For example, a time measure should always have
a start and an end event. Furthermore, a slot may be filled with multiple events. For
example, a count measure can be used to measure the total number of occurrences of
multiple events, such as the number of accepted and the number of rejected orders.

6.2.2 Slot Domains
As illustrated in the previous section, PPI templates contain four different types of slots:
measure types, aggregation functions, group-by properties, and process concepts. In a
structured PPI definition, each of these slot types can only be filled with values from
a closed class, i.e., from a specific domain. By filling slots with values from known

CHAPTER 6. TRANSFORMING AND ALIGNING PPIS 109

domains, we can ensure that values for the defined PPIs can actually be computed in
an automated manner. Consider, for example, the textual description of PPI2. This de-
scription refers to the “completion of an order”. Without incorporating domain knowl-
edge, it is not clear to which process concept this statement exactly refers. Therefore,
it is not possible to compute a value for this PPI based on this information. If we,
instead, fill this slot with a value from the appropriate slot domain, i.e., by associating
the slot with the “Order handling completed” process model event, we overcome this
issue. Then, we know that the computation of a value for this PPI requires us to stop
the measurement when this specific event occurs. Table 6.4 summarizes the domains
for the four different slot types.

Table 6.4: Domains associated with template slots

Slot type Domain values

Measure type count, time, data, fraction
Aggregation function minimum, maximum, average, sum
Group-by property Data objects
Process concepts Activities, events, & data objects

To increase the expressiveness of the PPI definitions that follow our templates, we
base the slot domains on an extended version of the process model definition provided
in Definition 2.4. In particular, we utilize the abstract business process modeling lan-
guage designed to be used with the PPINOT framework, which provides the foundation
for our PPI definitions. The metamodel for this abstract modeling language, defined
in [233], introduces two main, additional concepts in process models: the notion of a
data object and of a runtime state. A data object can be used to capture data that is
relevant to a process and its execution, such as data attributes and resources that exe-
cute activities1. In general, the attributes that can be associated in this way are highly
similar to event attributes, as given by Definition 2.6. Examples of data objects relevant
to the running example are an order, the order amount, and an invoice.

Runtime states are used to denote values that are assigned or changed as the process
instance is executed. For example, process model activities can be associated with
states that correspond to the transaction types associated with events from event logs,
defined in Section 2.2. In this way, runtime states can be used to differentiate between,
for instance, the start and completion of activities for a process instance. Similarly,
runtime states can denote the status of data objects. For example, in an order handling
process, an order data object may have a status, such as rejected or accepted associated
with it as a runtime state.

To operationalize these additional concepts, we extend the process model definition
from Definition 2.4 into a definition that includes the data objects and runtime states
necessary to capture additional details of a process:

1Note that this notion of data objects from [233] is broader than the concept of data objects in, for
example, BPMN.

110 6.2. TEMPLATE-BASED PPI DEFINITIONS

Definition 6.1 (Data-Aware Process Model). A data-aware process model is a tuple
MD = (A, E,G,N, F, t,O, u, S , v), where:

• A is a finite set of activities,
• E is a finite set of events,
• G is a finite set of gateways,
• N = A ∪ E ∪G is a finite set of nodes,
• F ⊆ N × N is the flow relation, such that (N, F) is a connected graph,
• t : G → {and, xor} is a function that maps each gateway with a type,
• O is a finite set of data objects,
• u : O→ N is a partial function that maps data objects to nodes,
• S is a finite set of runtime states,
• v : S → N∪O is a surjective function that maps runtime states to nodes and data

objects.

Measure type & Aggregation The domains for measure type and aggregation func-
tion slots are independent of the process to which the PPI relates. A measure type slot
always receives a value from one of the four measure types considered by our approach:
Dtype = {count, time, data, fraction}. Similarly, the domain for aggregation functions
covers the most common functions identified in [236]: Daggr = {minimum, maximum,
average, sum}.

Group-by property The domain for group-by properties depends on the contents of
the process model to which the PPI relates. The group-by property can be defined using
any data object from the set O. This means that the group-by property can be used to
group process instances based on data values or resources involved the execution of an
instance. For instance, the group-by property of PPI6 corresponds to the “customer”
data object associated with a process instance.

Process concepts Process concept slots are filled with references to parts of a process
implementation. Therefore, the domain associated with these slots differs per process
model. This domain is based on a model’s activities (and their transaction types),
events, and data attributes. Given these elements, a process concept slot can be filled
in three different ways, as previously indicated in Figure 6.2:

1. Process concepts in a PPI definition can refer to the state change of a process
model activity. We consider state changes of activities rather than activities as
a whole, because the calculation of PPIs often requires the consideration of an
exact time instant. For example, in order to compute the time it takes to ship
products, we are interested in the difference between the time instants of the start
and completion of the activity execution. Specifically, a process concept here is
aligned to the combination of a process model activity a ∈ A and a runtime state
mapped to a by the function v;

2. Process concept slots can correspond to the triggering of an event e ∈ E. Since
such event occurrences are always instantaneous, this is not associated with a
state change. As an example, consider PPI2. There, both the start and end times
refer to process model events, i.e. to the “order received” and “order handling
completed” events;

CHAPTER 6. TRANSFORMING AND ALIGNING PPIS 111

3. Process concept slots can be associated with data attribute values. For example,
to compute PPI6, “The total order amount per customer”, we have to consider
the value of the data attribute amount of the order data object. Here, the slot of
a process concept is aligned to a data object o ∈ O.

In the next section, we present our approach, which automatically fills the defined
templates for natural language PPI descriptions.

6.3 Transformation Approach
To transform an unstructured natural language PPI description into a structured nota-
tion, we define the transformation task as a template-filling problem. In this section,
we describe a transformation approach that addresses this problem. Given a natural
language PPI description, our approach aims to obtain the information necessary to fill
the slots of a PPI template. To achieve this, the transformation approach performs two
subsequent steps, as depicted in Figure 6.3.

Natural language
PPI description

Semantic
annotation

Domain value
resolution

Average time between receipt and completion of an order

AGR TMI TSI TSE TEI TEE

HMM Process
model

Domains

Filled PPI
template

D : {x | x in R}

Figure 6.3: Overview of the proposed transformation approach

First, the approach parses a natural language description in order to identify the
parts of the description that correspond to slots of the PPI template. For this parsing
step we use HMMs. We refer to this parsing task as semantic annotation. Second,
the approach determines the appropriate slot-fillers by matching the semantically an-
notated parts to values in the relevant domain, e.g., by matching concepts from the
natural language description to activities in a process model. We refer to this task as
domain value resolution. In the remainder of this section, Sections 6.3.1 and 6.3.2
respectively describe the semantic annotation and domain value resolution tasks in de-
tail. Afterwards, Section 6.3.3 discusses the operationalization of our approach and its
extensibility.

6.3.1 Semantic Annotation
The first step of our approach identifies those parts of a natural language PPI description
that correspond to the semantic concepts contained in the PPI templates. For example,
for PPI5: “the maximum time to transport an order”, we aim to identify that “maxi-
mum” corresponds to the concept of an aggregation function, “time” corresponds to the
measure type, and “transport an order” describes the events to be measured. For this
semantic annotation task, we define a tag set Σ that can be used to annotate relevant
semantic concepts in natural language PPI descriptions.

112 6.3. TRANSFORMATION APPROACH

Semantic Tags

Table 6.5 presents the tag set we use for the semantic-annotation step. We establish this
tag set Σ by defining two sorts of tags. First, Σ includes tags that correspond to each
of the semantic concepts from the PPI templates. For example, we use AGR to refer
to an aggregation function and FNE to denote a numerator event of a fraction PPI.
Second, Σ contains tags used to annotate textual indicators that signal the transition of
the description to a new semantic concept. For example, we use the tag T EI, i.e., a
time end indicator, to show that a time end event will be described next. This can be
seen for PPI2, “Average time between receipt and completion of an order” where the
term “and” denotes a transition from the description of the start event (“receipt”) to the
end event (“completion of an order”). To illustrate the usage of the tag set, consider
the following annotation of PPI2 from the order handling process:

average\AGR, time\TMI, between\TSI, receipt\TSE, and\TEI,

completion of an order\TEE.

From this annotation, we can observe that “average” corresponds to the aggre-
gation function slot of a PPI template, “receipt [of an order]” to the start event and
“completion of an order” to the end event.

Table 6.5: Tag set used for semantic annotation

Tag Description Examples

AGR Aggregator function average, sum, maximum
GBI Group by indicator per, for each
GBC Group by concept category, customer, department

CMI Count measure indicator number of, volume of, number of times
CE Counted event accepted orders, incidents

TMI Time measure indicator time, duration, throughput time
TSI Time start indicator from, between
TSE Time start event order received, product picking
TEI Time end indicator to, until
TEE Time end event order completion, product shipment
TBE Time start and end event service interruptions, product packaging

FMI Fraction measure indicator percentage of, ratio of, proportion for
FNE Fraction numerator event rejected orders
FDI Fraction division indicator divided by, relative to, as a percentage of
FDE Fraction denominator event received orders

In the tag set Σ, we purposefully do not define separate tags for data measures,
because their semantic structure generally follows a similar syntactic pattern as other
measures. Consider, for instance, PPI6: “the total order amount per customer.” This
description of a data measure follows an identical structure as a count measure would.
However, in the context of this process model, “amount” refers to a data attribute of an

CHAPTER 6. TRANSFORMING AND ALIGNING PPIS 113

start

AGR

TMI

TBE

TSI TSE TEI TEE

GBCGBI end

0.21

0.10

0.71

0.61

0.39

1.00 1.00 1.00

0.08

1.00 1.00

0.92

0.10

0.90

Figure 6.4: Fragment of a semantic prior P(Θ)

order, rather than describing a regular count measure. Since such distinctions solely
depend on the contents of the process model, i.e., on its data objects, we leave the dif-
ferentiation between data and other measure types for the second step of our approach.

Semantic Annotation using HMMs

For the automated annotation of a PPI description, we use an HMM that assigns se-
mantic tags to chunks of the description. Each word in a description is part of exactly
one chunk and each chunk is assigned exactly one tag. We use π =< ϕ1, . . . , ϕn > to
denote the chunks of a partitioned description and Θ =< θ1, . . . , θn > to describe the
sequence of tags assigned to the chunks, where θi ∈ Θ is the tag that corresponds to the
chunk ϕi ∈ π. Formally, given a word sequence W that constitutes a PPI description,
the goal of the HMM is to then find the semantic representation of the meaning Θ that
has the maximum a posteriori probability P(Θ | W) [275]. This probability is given by
the following equation:

Θ̂ = arg max
Θ

P(Θ | W) = arg max
M

P(W | Θ)P(Θ) (6.1)

Equation 6.1 shows that, to compute Θ̂, the HMM combines two separate models:
a semantic prior P(Θ) and a lexicalization model P(W | Θ). We now briefly describe
how these models work in the context of our transformation approach. For a more
detailed explanation of the technical aspects underlying HMMs, we refer the interested
reader to [223].

Semantic prior. The semantic prior P(Θ) assigns a probability to an underlying se-
mantic structure Θ. Intuitively, it models the probability that a PPI description follows
a certain semantic structure, i.e., a sequence of tags from Σ. The model can be repre-
sented as a probabilistic finite automaton. The states of this automaton correspond to
labels in the set Σ. The transition probabilities between states denote the probabilities
that these states follow each other in a semantic structure. These probabilities can be
learned by training an HMM on a collection of (partially) annotated PPI descriptions.
We further reflect on the training of HMMs at the end of this section.

The semantic prior that results from a training phase can be used to determine the
likelihood that PPI descriptions follow a certain semantic structure. As an example,
consider the fragment of a semantic prior depicted in Figure 6.4. This figure shows the

114 6.3. TRANSFORMATION APPROACH

semantic prior relevant to the annotation of time measures. From this semantic prior,
we can observe that, despite the huge variability that natural language PPI descriptions
can use to describe time measures, there is much less diversity in the semantic structure
that they follow. For example, the prior shows that if a time measure (in this training
set) has an aggregation function, then this is the first semantic concept that is described,
whereas an optional group-by property occurs at the end of a description. Furthermore,
the prior shows that a time measure indicator (TMI) is followed by a specification
of an event that describes both the beginning and end of the measure (TBE) with a
probability of 0.61, i.e. T MI → TS I has a probability of 0.61. In the other cases,
TMI is followed by a time start indicator (TSI). By contrast, a TSI is always followed
by a time start event (TSE) (probability of 1.00), because there are no other semantic
structures in which a TSI occurs. This means that a TSI will never be directly followed
by, for instance, a time end event or a group-by indicator.

Lexicalization Model. The lexicalization model P(W | Θ) quantifies the probabil-
ity that a given word sequence W is used to model a certain semantic structure Θ.
Intuitively, it quantifies the probability that W is used to a convey a meaning Θ. In
particular, it models the transition probabilities between words given a certain con-
text, i.e., a certain semantic concept. Probabilities in the lexicalization model have the
form P(wordn | wordn−1, context), which is the probability of taking a transition from
one word to another given a particular context [196]. For example, the probability
P(time | throughput,T MI) denotes that the word time follows the word throughput
in the context of a TMI (time measure indicator). As for the semantic prior, these
probabilities are learned from a (partially) annotated training set. By training a lexi-
calization model, we can, for instance, learn that the term “for” is much more likely
to be followed by the word “each” in the context of a group by indicator (GBI) than
in the context of a time start event (TSE). Therefore, the HMM will assign a higher
likelihood to the possibility that “for each” indicates a group-by property than that it is
part of the description of a start event.

Probabilistic Annotation. Once the HMM has been trained, it can be used to assign
tags to a previously unseen PPI description. To find the best tag sequence M̂, the op-
timization problem denoted by Equation 6.1 considers the product of the probabilities
from the semantic prior P(Θ) and lexicalization P(W | Θ) models. The combina-
tion of these two models follows intuitively. The probability that a word sequence W
corresponds to a certain semantic structure Θ depends on both the likelihood of this se-
mantic structure occurring (P(Θ)) and the likelihood that W is associated with a certain
semantic meaning (P(W | Θ)). The task of finding the optimal sequence of labels M̂
is also referred to as decoding. The most common decoding algorithm for HMMs is
the viterbi algorithm, a dynamic programming algorithm [p.74] [135]. Because the al-
gorithms only affect the computational efficiency of the optimization problem and not
the final outcome, we abstract from its details and refer the reader to [95] for a detailed
explanation. We previously showed the semantic annotation obtained for PPI2. For the
remaining three PPI descriptions considered in Section 6.2, we obtain the following
semantic annotations:

PPI1 : π1\M1 = number\CMI of accepted orders \CE

CHAPTER 6. TRANSFORMING AND ALIGNING PPIS 115

PPI4 : π4\M4 = the percentage\FMI of rejected orders \FNE

PPI6 : π6\M6 = the total\AGR order amount\CE per\GBI customer\GBC

We take these semantic annotations as input for the next step of our approach: the
domain value resolution step.

6.3.2 Domain Value Resolution
In the second step of our approach, we obtain a PPI definition by filling the slots of
a PPI template with values from the appropriate domains. The semantic annotations
obtained in the previous step tell us which chunks of text correspond to which slots in
a PPI template. For example, from the annotation of PPI2, we know that the chunk
ϕ6 : “completion of an order” corresponds to the end event slot in a template. We il-
lustrate the full connection between semantic annotation and template on the left-hand
side of Table 6.6. However, this only presents an intermediate result of our approach.
To be able to actually measure the value of this PPI definition, links have to be estab-
lished to the events that occur during the execution of the process. For example, to
compute a value for PPI2 we need to determine that the chunk ϕ6 corresponds to the
“order handling completed” process model event. Therefore, in this second step of
our approach, we fill the template slots with values from the appropriate domains, as
depicted in Table 6.6.

Table 6.6: Domain value resolution for PPI2

(a) Before resolution

Slot Value

Measure type time
Aggregation “average”
Start event “receipt”
End event “completion of an or-

der”
Group-by —

(b) After resolution

Slot Value

Measure type time
Aggregation average
Start event Order received
End event Order handling com-

pleted
Group-by —

To perform this domain value resolution for aggregation functions and group-by
properties, we consider the semantic similarity between a chunk ϕ and the respective
domain values. For process concepts, we combine semantic similarity with constraints,
which we impose based on the semantics of the various measure types. We next de-
scribe these two aspects in detail.

Semantic Similarity

We use semantic similarity to determine for a given chunk ϕ ∈ π which value in its
associated domain Dϕ has the most similar meaning. We consider semantic rather than
(just) syntactic similarity for this task because it allows us to deal with semantically
related terms, such as synonyms. For example, by considering semantic similarity, we
can learn that the chunk “transport an order” is most closely related to the “product

116 6.3. TRANSFORMATION APPROACH

shipping” activity. The computation of semantic similarity is achieved in a manner that
is largely equal to the one applied in the context of the alignment of process models
to textual descriptions, as described in Section 3.2.2. More details on the employed
normalization techniques and similarity measures are presented in Section 2.4.3.

Normalization. To determine the semantic similarity, we first apply a normaliza-
tion step on a chunk ϕ and on the domain values Dϕ. We perform three tasks in the
normalization step. First, we split the textual contents of a chunk or a domain value
into individual terms. Second, the function filters out stop words like “the”, “an”,
and “from”, which do not contribute to the similarity computation. Finally, the nor-
malization step lemmatizes the remaining terms by transformaring all remaining terms
into their grammatical base form. For instance “is” and “been” are both transformed
into “be”. To implement these steps we use the Stanford Parser and the associated
toolkit [180]. As an illustration, the normalization step yields the following token set
for the chunk ϕ =“completion of an order”: ωϕ = {“completion”, “order”}.

Semantic computation. Given two token sets ωϕ and ωd, we quantify the semantic
similarity using the similarity measure proposed by Mihalcea et al. [192], and described
in detail in Section 2.4.3. This measure combines the semantic similarity of individual
terms with word specificity scores. Equation 6.2 formalizes the measure for a chunk ϕ
and a domain value d.

sim(ωϕ, ωd) =

∑
t∈ωϕ

[max
t′∈ωd

simso(t, t′)] × id f (t)

2 ×
∑

t∈ωϕ
id f (t)

+

∑
t∈ωd

[max
t′∈ωϕ

simso(t, t′)] × id f (t)

2 ×
∑

t∈ωd

id f (t)
(6.2)

In this equation, simso(t, t′) captures the second-order similarity between two terms
t and t′ computed according to the approach by Kolb et al. [145].

The calculation of semantic similarity suffices for the aggregation function and
group-by property slots, since the appropriate values for these slots solely depend on
the textual similarity between chunk and domain value. By contrast, for the filling of
process concept slots, we also have to consider constraints related to the semantics of
a measure type.

Constraints on event alignment

When filling the slots of a PPI template, it is important that the end result makes sense
from a semantic perspective. For instance, the start event of a time measure should
always occur before its end event. Otherwise, the resulting metric will be semantically
invalid. For this reason, we impose certain constraints on the inter-relations of the pro-
cess model elements assigned to process concept slots. To achieve this, we formulate
the slot-filling for event slots as an alignment problem. In the context of this work, an
alignment ∼ consists of a number of pair-wise correspondences, each between a tagged
chunk from a PPI description ϕ ∈ πe and an element of a process model m ∈ M. We de-
note such a correspondence as ϕ ∼ m. We impose constraints on an alignment relation

CHAPTER 6. TRANSFORMING AND ALIGNING PPIS 117

∼ through a constraint function Γ. In particular, we use Γ to impose three semantic con-
straints. The first constraint applies to time measures, the other two relate to fraction
measures. Because the constraints are applicable to the inter-relations that exist be-
tween the correspondences assigned to different slots, we do not define constraints for
count measures, which only have a single slot to be filled through the correspondences.

Time measures. For time measures, we impose an ordering constraint on the events
and activities associated with the start event and end event slots. From a semantic
viewpoint, a PPI in which the start event occurs after the end event does not make
sense. Therefore, we ensure that the model element mi aligned to the start event slot πi

occurs in the process model before the element m j associated with the end event slot
π j. We achieve this by considering the flow relation F that exists between the nodes in
a process model. Given a time-measure alignment ∼= {πi ∼ mi, π j ∼ m j}, we impose
the constraint that there must be a path from mi to m j in the process model MD, based
on the flow relation F. Given the set of nodes N and two nodes x, y ∈ N, a path exists
if there exists a sequence of nodes n1, . . . , nk ∈ N with x = n1 and y = nk such that for
all i ∈ 1, . . . , k − 1 holds: (ni, ni+1) ∈ F [162, p.14]. In this way, the constraint captures
that the aligned start element (mi) occurs before the end element (m j).

Non-trivial fractions. For fraction measures, we ensure that the obtained result is not
a trivial measure, i.e., that the defined measure does not always yield 1.0. For this
reason, we ensure that the numerator slot πn and denominator slot πd are not aligned
to the same model element. Therefore, given an alignment ∼= {πn ∼ mn, πd ∼ md}, it
must hold that mn , md.

Computable fractions. Lastly, we ensure that a fraction measure can actually be com-
puted, instead of resulting in a divide-by-zero error. Therefore, we must ensure that
the denominator slot is filled, even for those cases where a PPI description does not ex-
plicitly mention a denominator. This can be seen for PPI4, which simply refers to “the
percentage of rejected orders,” without specifying a denominator. In these cases, we
align the slot πd by default to a process concept that represents a more coarse-granular
version of the process concept aligned to the numerator slot πn. There are two possibil-
ities for such default numerators. If πn is aligned to a data object with a specific status,
e.g., “order [updated]”, we align πd to the data object without the status specification,
e.g., the “order” data object, if any. As such, we obtain a fraction measure that divides
the number orders that have been updated by the total number of orders. For all other
alignments of πn, we align the denominator by default to the start event(s) of a process.
In this way, the denominator corresponds to the total number of process instances. For
example, PPI4 will then divide the number of rejected orders by the total number of
received orders.

We combine these constraints with semantic similarity scores. Therefore, we set
out to obtain an alignment that has the highest possible sum of semantic similarity
scores for the correspondences in ∼, as long as ∼ abides to the alignment constraints Γ.
The alignments obtained in this way, in combination with the domain value resolution

118 6.4. EVALUATION

of the other slot types, provide the final result of our transformation approach: a filled-
in PPI template.

6.3.3 Operationalization and Extensibility
The transformation approach described in this section can be regarded as an extensible
framework for the transformation of natural language PPI descriptions into measurable
indicators. In this chapter, we have so far described an instantiation of this frame-
work that covers the most common types of PPIs according to insights obtained from
practice [233, 235, 236]. This approach can thus be readily used for this set of PPIs.
However, should users desire to extend the presented approach, for example, by incor-
porating different measure types, this can be achieved in a straightforward manner.

An extension requires the specification of new (or adapted) PPI templates and a re-
training of the HMM. By designing new PPI templates in accordance to a structured PPI
notation, such as the PPINOT metamodel [233], it can be ensured that also the values
of these newly covered measure types can be computed in an automated manner. Once
a new template has been defined, the HMM must be adapted to be able to generate PPI
definitions in accordance to this template. To this end, tags must first be defined to
cover newly introduced semantic concepts. As previously explained in Section 6.3.1,
two tags must be defined for each new semantic concept: (i) a tag for the semantic
concept itself and (ii) a tag for an indicator of the concept. Once the adapted tag set
has been defined, several annotated PPI descriptions are required to retrain the HMM
to incorporate the newly defined measure type.

The amount of new training data required depends on the (expected) variety of lin-
guistic patterns that can be used to describe the measures. As the evaluation in the next
section illustrates for fraction measures, sometimes only a handful of annotated PPI
descriptions suffices. Two approaches are possible to train the HMM. In case an avail-
able training set DT is fully annotated, i.e., all PPI descriptions in the training set are
annotated, the models P(Θ) and P(W | Θ) can be learned by simply counting [275]. For
instance, we can learn the probability that a T EE tag follows a T MI tag by taking the
number of descriptions in T that contains the subsequence < T MI,T EE > divided by
the total number of descriptions in T containing < T MI >. In caseDT is only partially
annotated, estimation algorithms can be used to compute the probability distributions.
The most commonly used are forward-backward algorithms, such as the Baum-Welch
method (see e.g., [223]). Due to the ability of these methods to work with partially
annotated data, it is possible to add large amounts of additional training data, without
the need to annotate them all.

Through similar adaptations, the approach can be extended in other ways. For
example, new aggregation functions can be included or the HMM can be trained to
work on specific application domains.

6.4 Evaluation

To demonstrate the capabilities of our transformation approach, we conducted a quan-
titative evaluation by comparing automatically generated, structured PPI definitions to

CHAPTER 6. TRANSFORMING AND ALIGNING PPIS 119

Table 6.7: Overview of the test collection

Source P PPIs Count Time Data Frac. Aggr. Group-by

Industry 10 47 25 20 1 7 12 8
SCOR 3 76 27 21 24 4 39 1

Total 13 129 52 41 25 11 51 9

a manually created gold standard. In this way, we assessed how well the automated
approach approximates manual transformations of PPI descriptions. Therefore, it as-
sesses the usefulness of our approach. To achieve this, we used a test collection con-
sisting of 129 PPIs obtained from industry. Both the test collection and prototypical
implementation used in this evaluation are publicly available.2

Section 6.4.1 provides detailed information on the used test collection. Section 6.4.2
describes the way in which we conducted the evaluation. Lastly, Section 6.4.3 presents
and discusses the evaluation results.

6.4.1 Test Collection

To evaluate our approach, we use a collection of process models and accompanying
natural language PPI descriptions from practice. Part of the test collection consists
of an industrial data set stemming from prior research on the formalization of PPI
definitions and service level agreements [234, 235]. In particular, this set consists of
processes from three different organizations: (i) a healthcare institute, (ii) a university,
and (iii) a telecommunications provider. This data collection was originally provided
in Spanish, but translated to English in collaboration with the respective industrial part-
ners. We augmented the industrial data set with a number of process models and PPIs
from the Supply Chain Operations Reference (SCOR) reference framework. From this
framework, we selected processes with a high number of associated performance indi-
cators per process and a considerable complexity of the associated process model. The
selected processes cover different aspects of the logistics domain: procurement, pro-
duction, and delivery. The PPI descriptions obtained in this manner were not altered
with respect to their contents. The set of descriptions varies greatly with regard to their
language and structure.

We had to exclude nine PPI descriptions from the original data collection. These
PPI descriptions could not be manually transformed into a structured notation based
on the contents of the available process models, i.e., their computation required infor-
mation that is not conveyed in the model. The resulting test collection consists of 12
process models with a total of 129 associated PPIs. Table 6.7 presents an overview of
the further characteristics of the collection. This table shows the number of PPIs per
type, and the number of PPIs that are associated with an aggregation function (aggr.)
or group-by property.

2Download from: www.hanvanderaa.com/downloads/ppi-transformation

120 6.4. EVALUATION

6.4.2 Setup
To conduct the evaluation, we implemented the presented transformation approach in
the form of a Java prototype. The prototype uses the Stanford CoreNLP toolkit [180]
for the tokenization of PPI descriptions and the semantic similarity implementation
DISCO [145] to calculate second order similarity scores. We use this prototype to
generate structured definitions for the PPI descriptions included in the test collection.

We compare the generated definitions to a manually created gold standard. For the
creation of this gold standard, we partially built on information directly provided by
the SCOR framework. This information included the alignment of the associated PPIs
to process model elements. For the remaining alignments and PPIs, we used a similar
procedure for the establishment of a gold standard as used in Chapter 3. Specifically,
we let two researchers independently establish a gold standard by manually transform-
ing the PPI descriptions. The creation of the gold standard yielded an inter-annotator
agreement of 0.97. The five discrepancies between the two gold standards were re-
solved through a discussion.

To perform the comparison between the generated definitions and the gold standard,
we computed the same metrics as used in the evaluation of Chapter 3. In particular, we
computed precision, recall, and the F1-score, as formalized by Equations 6.3, 6.4, and
6.5.

pre =
|A ∩ G|

|A|
(6.3) rec =

|A ∩ G|

|G|
(6.4) F1 =

2 ∗ pre ∗ rec
pre + rec

(6.5)

In these equations, A denotes the set of slots filled by our approach and G for the
slots filled in the gold standard.3 In the context of this evaluation, precision reflects
the fraction of slots that our automated approach filled correctly according to the gold
standard. Recall represents the fraction of slots filled in the gold standard that were
also correctly filled by our approach.

To compute the evaluation results, we train our approach on a part of the PPI collec-
tion, referred to as the training set, and apply it on the remainder of the data collection,
the test set. To avoid any bias in the result due to sampling, we perform a repeated k-
fold cross-validation. In a k-fold cross-validation, a data setD is randomly split into k
mutually exclusive subsets (i.e., folds), D1, . . . ,Dk of approximately equal size [144].
In each experiment run, our approach is then tested k times. Each time t ∈ {1, 2, . . . , k}
we trained the HMM on D \ Dt and tested it on Dt. By repeating the cross-validation
with different random splits of the data set, we can learn how much the results are
affected by a particular partitioning of the data collection.

6.4.3 Results
In this section, we present the results of our evaluation experiments. We first provide
an overview of the quantitative results and, afterwards, discuss the challenges that our

3Note that we exclude null values assigned to the optional aggregation function and group-by property
slots from consideration.

CHAPTER 6. TRANSFORMING AND ALIGNING PPIS 121

approach faces in the context of a post-hoc analysis.

Overview

We used our prototype to conduct a k-fold cross validation with k = 10, which we
repeated 30 times. We performed this cross validation for the industry and SCOR data
collections separately, as well as for the combined collection. Table 6.8 summarizes
these results for our approach and the baseline. It shows that our transformation ap-
proach performs well, obtaining an average F1-score of 0.85. The approach achieves
an average precision of 0.89, ranging between 0.78 for group-by properties and 0.93
for aggregation functions. The average recall obtained by the approach is 0.82, rang-
ing from 0.72 for the alignment of process concepts and 0.96 for the identification of
aggregation functions. From the low observed standard deviations (0.01 for the entire
set of slots), we can learn that the performance of the approach is stable in the context
of this data set. Furthermore, we observe that the alignment of process concepts differs
considerably between the two data collections. For the other slot types, the average per-
formance is comparable. Lastly, it is interesting to consider that our approach achieved
a fully correct transformation for 67% of the PPIs in the data collection. Furthermore,
the transformation approach returns at most one incorrect slot filler for a total of 86%
of the PPIs.

Table 6.8: Evaluation results

Data source Slot type Prec. Rec. F1

Measure type 0.90 0.90 0.90
Process concepts 0.67 0.63 0.65

Industry Aggregators 0.92 1.00 0.97
Group-by 0.74 0.74 0.74

Total 0.78 0.76 0.77

Measure type 0.94 0.94 0.94
Process concepts 1.00 0.80 0.89

SCOR Aggregators 1.00 1.00 1.00
Group-by – – –

Total 0.98 0.88 0.93

Measure type 0.92 0.92 0.92
Process concepts 0.87 0.72 0.79

Full collection Aggregators 0.93 0.96 0.94
Group-by 0.78 0.78 0.78

Total 0.89 0.82 0.85

122 6.4. EVALUATION

Post-hoc Analysis

The quantitative evaluation shows that our transformation approach achieves a high
result accuracy. A post-hoc analysis of these results reveals that the approach faces two
main types of challenges. One challenge corresponds to the semantic annotation step
and the other to the domain value resolution step of our approach.

The usage of HMMs for semantic annotation enables our approach to deal with a
broad variety of linguistic patterns, even if a PPI description contains previously unseen
terms or syntactic constructs. However, the parser can produce incorrect annotations
if unseen terms play a prominent role in a PPI description. For instance, the collec-
tion of PPI descriptions from the SCOR framework contains a single PPI description
that uses the term “leadtime” in a time measure. Because this is a unique occurrence
in the used data collection, the HMM parser does not recognize this important logistic
term. Therefore, it incorrectly annotates this PPI description as a count measure, which
results in an incorrect measure type prediction. Furthermore, due to the semantic dif-
ference between count and time measures, it also results in an incorrect alignment of
process concepts. A count measure refers to only a single process event, whereas a
time measure requires both a start and an end event. Therefore, the misclassification
will also lead to at least one event not being correctly aligned. Still, such cases are rare
and their occurrences can be mitigated by extending the data collection used to train
the HMM.

The domain value resolution step of our approach has to deal with the highly com-
plex task of identifying the event that a chunk of text describes. The main challenge
here is that certain correspondences depend on context-specific information for their
identification. As an illustration, consider a PPI description from the industrial collec-
tion: “the elapsed time between the technician arrival to headquarters and the closure
of the intervention”. The start event of this description corresponds to the chunk “the
technician arrival to headquarters”, as correctly identified in the parsing step. How-
ever, identifying the correct process concept for this chunk is far from trivial. The
process model accompanying this PPI does not contain any activity or event that de-
scribes an “arrival” or “headquarters”. Instead, the event corresponds to the start of an
activity labeled “Perform field intervention”. To identify this correspondence correctly,
background knowledge is required to establish the connection between the “arrival of
a technician” and the start of a “field intervention”. Our automated approach does not
take such domain knowledge into account and, in some cases, identifies incorrect align-
ments between the PPI description and a process model. From the results described in
Table 6.8, it becomes clear that such cases are mostly present in the industrial data
collection.

Despite these challenges, the evaluation results demonstrate that the PPI definitions
generated by our automated approach closely approximate PPI definitions manually
created by experts. Therefore, we can conclude that our automated approach presents
an efficient alternative for an otherwise highly tedious, manual task.

CHAPTER 6. TRANSFORMING AND ALIGNING PPIS 123

6.5 Limitations

The quantitative evaluation demonstrates that our approach achieves promising results
in practical settings. However, these results need to be considered against the back-
ground of certain limitations. In particular, we identify limitations related to the ap-
proach itself and limitations related to its evaluation.

We identify two main limitations regarding the transformation approach First, it
provides an automated alternative to a highly complex task. As a result, the PPI def-
initions that the approach generates are accurate, but not one hundred percent perfect.
If desired, inaccuracies can be manually resolved by experts. This arguably requires
less manual effort than it takes to manually define all PPIs from scratch. As such, our
transformation approach allows users to trade-off between invested time and effort ver-
sus results quality. Second, it has to be considered that our transformation currently is
not able to detect when it is dealing with a PPI description that cannot be transformed
based on the available information. Such a situation can occur if the PPI describes a
measure type that is currently not included in the set of templates or if the PPI descrip-
tion requires information that is not captured in a process model. The latter case was
observed for the nine PPI descriptions that we had to exclude in the evaluation.

The presented quantitative evaluation results are bound to the specifics of the em-
ployed data collection. For instance, the included templates do not cover all imaginable
PPIs, but rather the ones most observed in our empirical studies. As stated earlier, the
impact of this limitation is diminished by the extensibility of our approach. Second,
within each measure type, the data collection presents a sample of the natural language
patterns that can be used to specify measures of this type. It is possible that in other
organizations measures are described in different ways. These factors should be taken
into account when interpreting the specified results. Still, we aimed to compose a data
collection that is as heterogeneous as possible by obtaining data from various sources.
Therefore, we are confident that our evaluation indeed shows a realistic picture of the
performance of our approach in practice.

6.6 Related Work

The work presented in this chapter particularly relates to two main streams of research:
(i) structured and measurable notations of PPIs and (ii) information extraction from
natural language.

Performance measurement is an active research field in management science, which
has gained interest in both academia and business [218]. Much work has been per-
formed on the identification and classification of Key Performance Indicators in gen-
eral settings [137] and those relevant for specific domains such as logistics, production,
and supply chains (cf. [52, 61, 150, 265]). Within the context of Process Performance
Measurement, great effort has been put on the formalization of PPI definitions. This has
resulted in a number of notations and frameworks for the description and monitoring
of PPIs [67, 112, 147, 198, 208, 218, 235, 243, 286]. The main differences among them
are found in their expressiveness, i.e. the different types of PPIs that can be defined,
and their features to directly support monitoring. Although the templates used in our

124 6.7. SUMMARY

approach are inspired by the PPINOT metamodel, our approach is generally applicable.
Specifically, the components of the templates can also be mapped to concepts in other
frameworks, such as [198, 286].

As shown in Section 6.3, we approached the task of transforming natural language
PPI descriptions as a so-called template-filling problem. Template filling, which is also
referred to as slot filling [262] or semantic-based understanding [274], has been exten-
sively studied and applied in a variety of contexts. A major application area for these
techniques is spoken language understanding, where information is extracted from un-
structured natural language text in the context of a dialog system [114]. The viterbi
algorithm, which we employed for the extraction of information from the descriptions,
also been applied in a broad variety of application scenarios. These include machine
translation [54], part-of-speech tagging [154], and spoken language processing [197].
To achieve this, many approaches employ probabilistic models, such as (variations on)
HMMs [196, 275].

6.7 Summary
This chapter presented an approach for the automated transformation and alignment
of natural language PPI descriptions. Our approach takes as input an unstructured
PPI description and produces a structured, template-based notation of a PPI. Because
our template-based notation builds on the PPINOT metamodel, the values of the ob-
tained PPI definition can be computed automatically. This makes the PPIs suitable for
automated process performance monitoring. To achieve this, the approach builds on
HMMs as linguistic parsers to identify the parts of a PPI description that correspond to
slots in a PPI template. Then, we use semantic similarity measures and semantic con-
straints to fill the slots with the appropriate values belonging to particular domains. We
evaluated the performance of our approach with a set of 129 real-world PPI descrip-
tions and accompanying process models obtained from various industrial sources. The
evaluation revealed that the structured PPI definitions generated by our approach are a
good approximation of those created manually by experts. In particular, the approach
achieves precision and recall values of, respectively, 0.89 and 0.82. Therefore, our ap-
proach represents a viable, automated alternative to an otherwise highly laborious and
time-intensive, manual task. This enables organizations to more efficiently monitor
the performance of their business processes and continuously adapt their monitoring
activities to changing business needs.

7
Process Model Matching using Event-Log

Information

Alignments between processes provide an important basis for a variety of application
scenarios and techniques. These alignments are, among others, used for the detection of
differences between models [156], the harmonization of process model variants [157],
process querying [131], and the propagation of process changes [280]. The accuracy
and, therefore, usefulness of such techniques is highly dependent on the correctness
and completeness of the alignments that are established by process model matching
techniques. However, despite the existence of a plethora of matching techniques, it has
been shown that their results leave room for improvement [58]. A possible cause for
this is that existing process model matching techniques focus exclusively on informa-
tion related to the specification of processes, typically by just considering the infor-
mation contained in process models themselves. Therefore, they ignore information
that relates to the actual execution of the processes, as captured in event logs. These
logs provide valuable information on data attributes, event durations, and other aspects
specifically associated with the enactment of a process.

In this chapter, we present techniques that exploit event-log information for pro-
cess model matching. Section 7.1 illustrates the usefulness of event-log information
in a matching context. Then, Section 7.2 presents six event log-based process model
matching techniques. The quantitative evaluation in Section 7.3 considers the perfor-
mance of the individual matching techniques, as well as their performance in the form
of a matching ensemble. We discuss limitations of our matching techniques and the
evaluation in Section 7.4. Afterwards, we consider related work in Section 7.5 and
summarize the chapter in Section 7.6.

7.1 Problem Illustration

To illustrate the usefulness of event-log information for process model matching, con-
sider two process models, M1 and M2, which depict two (simplified) processes to han-

125

126 7.1. PROBLEM ILLUSTRATION

dle loan applications. Also, consider their respective sets of activities A1 and A2. Fig-
ure 7.1 illustrates these models, with M1 at the top and M2 at the bottom. The figure
also highlights their correspondences, i.e., the activities that represent similar behavior.

Ba
nk

 1
Ba

nk
 2

Start

Receive loan
application

Assess loan
application

Perform
advanced

check

Send decision
letter

Application
handled

Start

Receive
application

form
Evaluate

credit score

Decide on
high-value

loan
Inform

applicant
Application

handled
Decide on
low-value

loan

Check
document

completeness

- caseID: 1293
- docsComplete: true
- creditScore: good

Event1

- caseID: 23048
- docsComplete: true

Event3

- caseID: 23048
- creditScore: low

Event4

- caseID: 1293
- amount: €200.000
- decision: accepted

Event2

- caseID: 23048
- amount: €10.000
- decision: denied

Event6

- caseID: 47001
- amount: €210.000
- decision: accepted

Event5

Figure 7.1: Two process models and their correspondences

In process model matching, we wish to automatically identify these correspon-
dences between A1 and A2. By analyzing the labels of activities, some correspondences
can be identified in a straightforward manner, such as the correspondence between “re-
ceive loan application” and “receive application form”. However, the label-based iden-
tification of other correspondences is not as straightforward, if at all possible. Consider
the “assess loan application” activity in M1 and the activities “check document com-
pleteness” and “evaluate credit score” from M2. For their correspondences, there is no
obvious syntactic or semantic relation between the contents of their labels. This makes
it difficult to recognize their similarity based on textual analysis. However, the events
associated with these activities do provide valuable information about their similarity.
Event1 in M1 includes attributes that describe the completeness of the filed documents
and the credit score. The events Event3 and Event4 in M2 are each also associated with
one of these attributes. This similarity between event attributes provides a strong indi-
cation of an existing relation between the activities, which could not be derived without
considering information beyond the contents of the process model.

In other cases, the names of attributes associated with events are useful but, by
themselves, do not suffice to distinguish among potential correspondences. For exam-
ple, the “decide on low-value loan” (ai) and “decide on high-value loan” (a j) activities
from model M2 both have events that contain an amount attribute. Therefore, the at-
tribute names are not sufficient to determine which of these corresponds to the “perform
advanced check” activity (ak) in M1. However, by analyzing the values associated with
these attributes throughout an event log, this could be achieved. For instance, if events

CHAPTER 7. MATCHING USING EVENT-LOG INFORMATION 127

corresponding to a j and ak are always associated with amounts above €200.000, while
ai always has a lower amount, the correspondence between a j and ak can be asserted.

In the next section, we describe how matching approaches take these and other
notions of similarity between events into account.

7.2 Event Log-Based Matching

This section describes how information contained in event logs can be utilized for pro-
cess model matching. In particular, we introduce six conceptual notions of similarity
that each characterize a different aspect of similarity derivable from event-log infor-
mation. Together, these notions provide a complete coverage of the prominent types
of information contained in event logs: ordering, frequencies, timestamps, and data
attributes. We consider one similarity notion for each of the first three types. Due to
the versatility of the data perspective in event logs, we consider three different sim-
ilarity notions related to the data attributes associated with events. To illustrate the
operationalization of these similarity notions, we introduce a corresponding similarity
measure for each of them. These measures can be used as FLMs, where the simi-
larity scores obtained by the measures are used to populate a similarity matrix. Each
measure produces a value in the range [0, 1], where a 1.0 score indicates perfect sim-
ilarity between two event classes according to the particular similarity notion. The
measures that we introduce can be applied without imposing any assumptions on the
data. Furthermore, we also reflect on alternative measures that typically depend on
certain assumptions or are computationally more complex.

The input for the matching techniques presented in this section are two process
models and two corresponding event logs, i.e., two model-log pairs (M1, L1) and (M2,
L2). We assume here that, given a process model M with activity set A and a corre-
sponding event log L with the set of event classes E(L), each activity a ∈ A corresponds
to exactly one event class E ∈ E(L) and vice versa. Therefore, without loss of gener-
ality, we here refer to activities and event classes interchangeably. This means that we
can, for example, refer to the similarity between the events of the event classes “Asses
loan application” and “Check document completeness” from the running example.

Finally, it is important to note that the introduced matching techniques do not de-
pend on the availability of process models. The matchers can also be used for scenarios
in which the goal is to directly establish alignments between the event classes from dif-
ferent event logs. However, for clarity, we focus on process model matching in the
remainder of this chapter, since this use case is more generally recognized.

7.2.1 Positional Similarity
Positional similarity focuses on the order in which events occur. The underlying idea of
positional similarity is that if two event classes occur at similar stages in the execution
of a process they are more likely to be similar. For example, the final activity in M1,
“Send decision letter”, is more likely to be similar to “Inform applicant”, which occurs
at the end of M2, than to “Receive application form”, which occurs at the start of that
process.

128 7.2. EVENT LOG-BASED MATCHING

Similarity measure. We define a relative position measure RP that quantifies the
average position at which events of a certain event class occur in traces. To account for
varying trace sizes, we consider the position of an event relative to the length of a trace.
Specifically, we use RPe to denote the relative position of an event e in a trace, given
as j
|σ|−1 . Here we use |σ| to denote the length of a trace and j denotes the index of e in

the trace, where j ∈ [0, n]. This gives us, for example, for σ = 〈a, b, c〉, RPa = 0/2,
RPb = 1/2 and RPc = 2/2. Equation 7.1 provides the RP measure, in which we use
RPE to denote the average RPe over all events e ∈ E with event class E.

RP(E1, E2) = 1 − |RPE1 − RPE2 | (7.1)

Alternatives. Comparing the position of events in traces provides a basic measure
for structural or behavioral similarity. Techniques for process model matching exist
that use more advanced similarity measures, for example those based on behavioral
relations [81]. Such measures can also be adapted to work on graph structures or
behavioral relations derived from event-log information. Such derivation is done by
techniques that automatically derive process models from event logs, i.e., so-called
process discovery techniques [19].

7.2.2 Occurrence Similarity
The frequency with which events of a certain event class occur can provide useful infor-
mation regarding its similarity to other event classes. For example, if two event classes
E1 and E2 each occur only rarely in an event log, then E1 and E2 both correspond to
some exceptional action, hinting at their potential similarity. In the running example,
for instance, it can be expected that the majority of loan requests will be for compara-
bly low amounts. This means that occurrences of the “Perform advanced check” and
“Decide on high-value loan” events are relatively rare. Therefore, by comparing the
frequencies with which these activities occur, the similarity between the activities can
be identified. Furthermore, the consideration of frequencies can also be used to iden-
tify similarity between event classes that only occur once per trace and those that occur
multiple times (i.e., rework activities).

Similarity measure. We define a measure FREQ which compares the average number
of occurrences of event classes per trace. We let FREQE denote this average for an
event class E, and use Equation 7.2 to formalize FREQ. Because it is possible that
FREQE > 1, this measure is normalized to ensure a confidence score in [0, 1].

FREQ(E1, E2) = 1 − |
|FREQE1 − FREQE2 |

max(FREQE1 , FREQE2)
| (7.2)

Alternatives. An alternative way to evaluate occurrence similarity is to consider the
fraction of traces in which an event class occurs, rather than the average number of
occurrences per trace. To illustrate the difference to the FREQ metric, consider an
event class E3 that occurs in only 50% of the traces, but in those traces it occurs twice.

CHAPTER 7. MATCHING USING EVENT-LOG INFORMATION 129

In this case, FREQE3 equals 1.0 (0.5 · 2), which would be the same for an event class
E4 that occurs once in every trace. Nevertheless, it is clear that the occurrences of
E3 and E4 are very different. Furthermore, it is possible to use statistical tests for the
comparison of frequencies, rather than compare averages. We reflect on these tests in
the following.

7.2.3 Duration Similarity
The time it takes to execute activities can serve as an indicator that provides useful hints
regarding their similarity. In our running example, it can be expected that activities
that check loans with high amounts are extensive and, therefore, consume a significant
amount of time. By contrast, the communication of the decision to the applicant can
very well be automated, resulting in negligible activity durations. This means that, by
considering the durations of activities, we can learn that the “Perform advanced check”
activity is more similar to “Decide on high-value loan” than to “Inform applicant.”

Similarity measure. A straightforward similarity measure for durations can be ob-
tained by comparing the average durations of an event class in a log. The duration of a
single event can be determined in two ways. In an ideal scenario, events are associated
with transaction types (through the #trans(e) attribute) that indicate whether an event
denotes the start or end of an activity. In these cases, durations are determined by com-
puting the difference between the timestamp of an event with the transaction type start
and a corresponding event with the transaction type complete. If such transaction types
are not available, an approximation can be obtained by taking the difference between
the timestamp of an event and the timestamp of its preceeding event in the trace. Then,
using DURE to denote the average duration of events of class E, Equation 7.3 provides
a normalized measure that returns a score in [0, 1].

DUR(E1, E2) = 1 − |
|DURE1 − DURE2 |

max(DURE1 ,DURE2)
| (7.3)

Alternatives. Durations can vary significantly among occurrences of the same event
class. Therefore, an alternative is to use statistical tests, e.g., the t-test or Kolmogorov-
Smirnov test [227] to compare the statistical distribution of the durations for two event
classes. By performing such tests, we do not only consider the averages of event du-
rations, but also their variability. An important downside of such tests is that certain
conditions have to be met in order to be able to apply them. For example, a t-test
requires data to be normally distributed. Another consideration to take into account
is the cost of computing the similarity. For instance, the Kolmogorov-Smirnov test
is computationally intensive, which can negatively affect its applicability to matching
problems.

7.2.4 Attribute name similarity
The names of attributes provide insights into the data values used or created by events.
These attribute names can be useful similarity indicators to identify correspondences.

130 7.2. EVENT LOG-BASED MATCHING

Their importance is demonstrated in the motivational scenario, where event classes
that produce the same attributes (e.g., the docsComplete attribute) are recognized to
be similar to each other.

Similarity measure. We define an attribute name similarity measure ATTR, which
determines the level of overlap in attribute names among the attribute sets associated
with two event classes. To quantify this overlap, we employ the well-known cosine
similarity measure from the field of information retrieval [244]. The cosine similarity
can be used to compute the similarity between two vectors. In the case of the ATTR
measure, these vectors represent the attributes associated with events of a certain class.

To illustrate this vectorization, consider the attributes associated with the “Assess
loan application” (E) and “Check document completeness” (E′) event classes from the
running example. Using a 2D vector to represent the docComplete and creditScore
attributes, we obtain the following vectors: ATTRE = (1, 1) and ATTRE′ = (1, 0).
Furthermore, we can add weights to these vectors by considering the commonality of
attribute names in the context of the context. We achieve this by computing the IDF
scores, introduced in Chapter 2, for each attribute name. Given two vectors ATTRE1

and ATTRE2 , the cosine similarity between them is computed by Equation 7.4.

ATTR(E1, E2) =
ATTRE1 · ATTRE2

‖ ATTRE1 ‖‖ ATTRE2 ‖
(7.4)

Alternatives. The ATTR measure only considers overlap in attributes with identical
names. However, syntactic and semantic similarity measures can also be used to quan-
tify the similarity between non-identical attribute names [102]. Section 2.4.3 presents
an overview of such measures. Syntactic similarity measures, such as the Levenshtein
distance [291], can be used to recognize that “name” and “lastName” describe simi-
lar attributes. Semantic similarity measures, such as WordNet-based similarity [56],
can be used to recognize attribute names with similar meanings, such as “amount” and
“value”.

7.2.5 Attribute Value Similarity

The values of an attribute, associated with events of a given event class may provide
insights into similarity beyond attribute name similarity. We can identify two general
scenarios for this. First, an analysis of attribute values can be useful to determine
similarity in the context of opaque or unrelated attribute names. For instance, it is
difficult to relate two attributes month and m based on their labels. By contrast, if
both attributes are associated with numeric values in the range 1–12 (or even month
names), their similarity becomes more apparent. Second, attribute value similarity can
be used to disambiguate event classes that use the same attributes. The motivational
scenario provides an example of this. The event classes “decide on high-value loan”
and “decide on low-value loan” in M2 both consider an amount attribute. Events of
the former class are associated with a higher range of values than events of the latter.
Therefore, by considering the attribute values, we can identify that the former event

CHAPTER 7. MATCHING USING EVENT-LOG INFORMATION 131

class is more likely to correspond to “perform advanced check” in M1, which similarly
occurs only for loan requests with a high amount.

Similarity measure. To quantify attribute value similarity for two individual attributes,
we rely on techniques from the research area of schema matching [89] where content-
based matching, (direct comparison of sets of attribute values) is combined with con-
straint-based matching. The latter aims to extract constraints from a set of values,
such as upper and lower bounds for numerical values. For brevity, we refrain from
presenting explicitly the equations used in this method. After considering the similarity
of individual attributes, the similarity values obtained in this manner can be used as
weights to calculate the cosine similarity between two attribute sets. Using VALE to
refer to the value sets of the attributes of an event class E, we compute the VAL measure
as given by Equation 7.5.

VAL(E1, E2) =
VALE1 · VALE2

‖ VALE1 ‖ ‖ VALE2 ‖
(7.5)

Alternatives. Various alternative techniques exist to determine the similarity between
two individual attributes, including identifying and comparing data types such as zip
codes or geographical names, putting constraints on values, and identifying data pat-
terns and distributions. The interested reader is referred to [224] for an overview of
such techniques applied in a schema matching context.

7.2.6 Prerequisites Similarity
The input data used by an event can be an important indicator of event class similarity.
Intuitively, this builds on the idea that the more similar the data that is used by event
classes, the more similar their purpose. For example, in the motivational scenario,
events of the classes “send decision letter” in M1 and “inform applicant” in M2 are the
only ones to occur after an event has produced a value for the decision attribute.

A challenge here is that event logs typically do not have an explicit notion of input
data. For instance, the the seminal definition by Van der Aalst [13] employed in this
thesis (See Section 2.2.2) assigns attributes to events, but does not enforce a distinction
between input and output attributes. Given this limitation, an event log can contain
information on the input data in two general ways. First, input data elements of an
event e might be part of the attribute set of e, as seen for the amount attribute of the
“perform advanced check” event. In this case, similarity of inputs is already covered
by the aforementioned attribute name and value similarity measures ATTR and VAL.
However, input data can also be derived from data attributes that were created prior to
the execution of an event, which we operationalize next.

Similarity measure. We define a measure PREQ that determines the similarity of
prerequisites based on the attributes associated with prior events. Specifically, given
an event ei that occurs at position i in a trace t, we define PREQei as the union of
all attribute sets Ae j for 0 < j < i. PREQE then denotes all attributes contained in
a set PREQe for all events e ∈ E with event class E. The similarity between two

132 7.3. EVALUATION

prerequisites sets PREQE1 and PREQE2 is then computed in a similar manner as the
ATTR measure.

PREQ(E1, E2) =
PREQE1 · PREQE2

‖ PREQE1 ‖ ‖ PREQE2 ‖
(7.6)

Alternatives. It is possible to consider the values of prerequisite attributes, rather
than their names, as provided by the VAL measure, or by combining the two. Further-
more, alternative measures can consider two more factors in the similarity computation,
namely frequency and proximity of prerequisite attributes. The frequency with which
an attribute is created prior to the execution of an event e ∈ E can be used to distinguish
among mandatory and optional prerequisites. In the context of process matching, such
a distinction was proposed by Sagi et al. [242]. The proximity between the creation
of an attribute and an occurrence of an event can provide insights into their similarity.
Intuitively, if an attribute is created by an event at index i in a trace, then this attribute is
more likely to be a relevant prerequisite to its immediate sequel event ei+1 than it is to
events that are further away. Frequency and proximity considerations can be integrated
by adapting the weights of the elements of the vectors used by PREQ accordingly.

7.2.7 Operationalization
The proposed similarity measures can be used as FLMs that quantify the similarity
between the activities of two process models. In order to use them for a full-fledged
matching task, the FLMs should be followed by second-line matching. In the eval-
uation presented in Section 7.3, we illustrate this by combining the similarity scores
of all six FLMs using an ensemble matcher. Afterwards, we identify the most likely
correspondence for each activity, by employing a decision maker to select the best
combination of correspondences.

It is here important to stress that the proposed FLMs are intended to be complemen-
tary to traditional process model matching techniques, rather than to replace them. For
instance, by using ensemble matchers, our event log-based matchers can be combined
with matchers that consider the activity labels of the process models. In this manner,
matching approaches can provide a full coverage of available process information in
order to achieve high-quality matching results.

7.3 Evaluation
This section presents an empirical evaluation that demonstrates the usefulness of event-
log information for process model matching. We evaluate the performance of the pro-
posed log-based matchers as a standalone tool. Specifically, we compare the corre-
spondences obtained by automatic matching based on our FLMs to a gold standard
that contains the true correspondences between event classes. Our evaluation is based
on real-world data, using a test collection of 105 event-log pairs. Section 7.3.1 provides
further details on this test collection. Afterwards, Section 7.3.2 describes the way in
which we conducted the evaluation. Finally, Section 7.3.3 presents and discusses the
evaluation results.

CHAPTER 7. MATCHING USING EVENT-LOG INFORMATION 133

7.3.1 Test Collection

To perform the evaluation, we use data from the BPI Challenge 2015 [83], which con-
sists of real-world event data related to the handling of construction permit applications
by five Dutch municipalities. The event data describe similar processes, while their ac-
tual implementation differs considerably. To obtain a sufficiently large collection of
event logs to match, we split the event data into event logs, each relating to a different
subprocess (on average 17 subprocesses per municipality). We omit the event logs that
contain less than five event classes in order to avoid trivial matching tasks. After this
step, we have a total of 57 event logs. We create pairs of event logs that relate to the
same subprocess from different municipalities. This results in a total of 105 event log
pairs.

Table 7.1: Characteristics of the test collection

Measure Traces Event classes Total corr. True corr. Log Overlap

Average 487.0 33.0 2,533.4 30.9 87.7%
Std.dev. 353.6 40.7 6,246.3 36.5 10.5%
Minimum 8 5 15 3 50.0%
Maximum 1409 172 26,832 156 100.0%

Table 7.1 provides an overview of the test collection. The table illustrates the great
diversity between the subprocesses. This can, for example, be seen in the number of
event classes per log, which ranges from 5 to 172. The column with true correspon-
dences (True corr.) reflects the number of actual correspondences that exist between the
event classes in a log pair. These true correspondences represent the gold standard for
this evaluation. This gold standard could be directly established because correspond-
ing event classes are associated with the same identifiers (i.e., action code) across
the event logs of the different municipalities. The last column in the table describes the
overlap in terms of the event classes of a log pair, i.e., the fraction of event classes that
appear in both logs. This measure indicates that, on average, 88% of the event classes in
a log also appear in the gold standard. In the most extreme case, only 50% of the event
classes from a log pair correspond to each other. Table 7.1 highlights the fact that even
though the processes are similar across the five municipalities, considerable differences
exist as well. The choice for this data collection is, furthermore, motivated by the lack
of event logs associated with the collections typically used to evaluate matchers, i.e.,
the collections of the Process Model Matching Contests [32, 58].

Note that in order to provide objective evaluation results, we obscure all references
to the names of event classes in this test collection. In particular, we hide the names and
values of the following attributes: concept:name, action code, activityNameEN,
and activityNameNL.

134 7.3. EVALUATION

7.3.2 Setup

To conduct the evaluation, we used the Ontobuilder Research Environment (ORE), an
open source schema matching tool that enables researchers to run and evaluate match-
ing experiments. We implemented the six FLMs in ORE and made their implementa-
tion publicly available as part of the tool.1

As described at the end of Section 7.2, establishing (exact) correspondences be-
tween the event class sets E(L1),E(L2) of a log pair requires a similarity matrixM(E(L1),
E(L2)) and a decision maker. Here, we obtain the similarity matrices in two different
manners, resulting in a two-part evaluation. In the first part, we use each of the six
FLMs separately to constructM(E(L1), E(L2)) based on a distinct similarity measure.
This part of the evaluation provides insights into the performance of the individual
FLMs and into the characteristics of the test collection. In the second part, we use an
ensemble matcher that combines the scores of the six similarity matrices into a single
matrix. By evaluating this matching ensemble, we obtain insights into the combined
performance of the matchers and their complementary nature. We further reflect on the
way in which the measures complement each other by computing correlations among
the individual similarity scores.

After obtaining a similarity matrixM(E(L1), E(L2)) we apply a decision maker on
the matrixM(E(L1), E(L2)) to obtain a set of exact correspondences, to which we will
refer to as C(E(L1), E(L2)) . In particular, we apply the Maximum Weighted Bipartite-
graph Match (MWBM) [105] to establish M(E(L1), E(L2)) . This decision maker is
particularly well-suited in the context of the test collection, because it establishes 1:1
correspondences between event classes.

As in previous chapters, we again use the precision, recall, and F1 measures to
compare the automatically obtained set of correspondences C to the set G of actual
correspondences included in the gold standard, as formalized by Equations 7.7, 7.8,
and 7.9. Precision here reflects the fraction of the correspondences obtained by the
matching techniques that is also included in the gold standard, whereas recall represents
the fraction of the correspondences in the gold standard that is correctly identified by
the matchers.

pre =
C ∩ G

C
(7.7) rec =

C ∩ G

G
(7.8) F1 =

2 ∗ pre ∗ rec
pre + rec

(7.9)

Next, we presents the results of our quantitative evaluation.

7.3.3 Results

Table 7.2 presents an overview of the results obtained by using the individual FLMs
and by using a matching ensemble based on all six FLMs. We will now elaborate on
the results obtained through these two methods.

1 https://bitbucket.org/tomers77/ontobuilder-research-environment

CHAPTER 7. MATCHING USING EVENT-LOG INFORMATION 135

Table 7.2: Evaluation results

FLM Precision Recall F1-score

RP 0.24 0.25 0.25
FREQ 0.14 0.14 0.14
DUR 0.13 0.11 0.12
ATTR 0.05 0.04 0.04
VAL 0.27 0.27 0.27
PREQ 0.09 0.08 0.08

Ensemble 0.38 0.38 0.38

Matching results

The results presented in Table 7.2 show that the performance varies greatly across the
various FLMs. The lowest performance results belong to ATTR and PREQ FLMs,
which both consider similarity based on attribute names. These FLMs achieve F1-
scores of 0.04 and 0.08, respectively. A post-hoc analysis of the similarity matrices
generated by these FLMs shows that, indeed, attribute names provide little discrimina-
tory power in the context of this particular test collection. In fact, most event classes are
associated with identical or nearly identical sets of attributes, which results in a simi-
larity score of 1.00 for the vast majority of event class pairs. By contrast, VAL achieves
the highest results with an F1-score of 0.27. This shows that attribute values provide a
substantially better indicator of similarity than attribute names. Furthermore, the per-
formance of RP shows that the consideration of positional similarity also provides a
relatively good indicator of similarity.

The last row of Table 7.2 presents the results obtained by an ensemble consisting
of the six FLMs. For this ensemble, we applied a naı̈ve weighting scheme, in which
we computed the average score of the six similarity measures. The results demonstrate
that the ensemble greatly outperforms individual FLMs, achieving an F1-score of .38.
A one-sided paired t-test reveals that this result is statistically significant (p < 0.05)
when compared to the best performing individual FLM (VAL). The improved results
of the ensemble illustrate that the six FLMs are complementary to each other and can
enhance each other’s performance.

Top-k results

The results shown so far indicate that the use of log data for process matching is a
valid approach that can identify correspondences among activities by analyzing execu-
tion data. It is also clear that the use of log data alone does not suffice to establish a
state-of-the-art matching tool. An F1-score of about 0.4 indicates a far from random
correlation between the decisions made by the ensemble and the true correspondences.
Still, it requires the support of other techniques to strengthen its performance. Existing
process model-based matchers represent good candidates, because they use valuable
process model information (e.g.,, activity labels), which is purposefully not used by

136 7.3. EVALUATION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ATTR PREQ DUR FREQ RP VAL Ensemble

R
ec

al
l

Matcher

top-1

top-3

top-5

Figure 7.2: Recall scores for top-k results

our log-based matchers. Because numerous model-based matchers exist, each with
their own strengths and weaknesses, we leave for future research the best way to tackle
the combination of log-based and model-based matching techniques. Here, we inves-
tigate the obtained results in more depth and determine to what extent the log-based
techniques lend themselves well to process matching.

Identified correspondences can be incorrect because often an event class has mul-
tiple correspondences with equal or near-equal similarity scores as the best candidates.
The selection of a single, best correspondence then becomes an arbitrary selection
among a handful of correspondences. This problem relates to the inherent issue of
uncertainty in the matching task. Works on matching monotonicity [101] have found
that this uncertainty prevents matchers from identifying a correct correspondence as
the one with the highest similarity measure. However, these works argue that good
matchers should contain the correct correspondences among the correspondences with
the highest similarity scores, i.e. in the so-called top-k matches. If they succeed in this,
a good matcher positions a true correspondence high enough for a human observer to
confirm it after scanning only a few possible correspondences. To test this, we check
for each event class whether its correct correspondence occurs within the top 3 or top
5 correspondences with the highest similarity scores.

Figure 7.2 presents results of the top-k analysis. For each matcher, we measure
the recall of top-1, top-3, and top-5. As expected, the matching result improves sig-
nificantly when the best correspondences are considered. This holds for all matchers,
but with varying levels of success. The biggest gain is observed for the RP measure.
There, the performance increases from a recall of 0.25 for top-1 to 0.69 and 0.78 for
top-3 and top-5, respectively. As such, the RP measure performs nearly identically
to the matching ensemble. The results indicate that all matchers show a monotonic
behavior, though some more than others. It is interesting to see that while the top-1
performance of RP is worse than the one of VAL, a different picture is drawn for top-
3 and top-5. There, RP surpasses VAL (in terms of Recall), performing just as well
as the ensemble matcher. Finally, what is important to realize is that by considering

CHAPTER 7. MATCHING USING EVENT-LOG INFORMATION 137

the top-3 and top-5 scores users need to just evaluate approximately 4% and 7% of
the total possible correspondences. These small fractions already enable the respective
identification of close to 70% and 80% of the true correspondences.

7.4 Limitations

Our evaluation demonstrates that the consideration of event-log information can be use-
ful for the identification of correspondences between process models. However, these
results need to be reflected against the background of some limitations. In particular,
we identify limitations related to the proposed matchers and limitations related to the
evaluation.

The main limitation of the proposed matchers is that they focus on characteristics
that can provide useful insights into similarity, but cannot guarantee similarity or dis-
similarity between event classes. For example, while the usefulness of positional simi-
larity is shown through the good performance of the RP measure, it is well-imaginable
that there are pairs of activities with a perfect RP similarity score, but which are ac-
tually not at all related to each other. In the same way, similarity of durations can be
useful, but there can be many tasks in the same process with an execution duration
of zero, i.e., automated tasks. By contrast, a certain process step can be very well
automated in one process, whereas it is performed manually in another, resulting in
complete dissimilarity according to the DUR metric. This characteristic of the event
log-based matchers differs compared to model-based matching techniques that, for in-
stance, analyze activity labels. If two activity labels are completely equal, then this
nearly always does indicate a correct relation between the activities. Nevertheless, our
matcher techniques are exactly intended to be used when such label-based matchers
do not achieve the desired result. Furthermore, this limitation mainly implies that the
FLMs perform best when used as part of a matching ensemble. In these cases, coinci-
dental similarity according to one FLM will most likely be evened out by other FLMs
included in the ensemble, as was also demonstrated in the evaluation of Section 7.3.

A limitation of the evaluation is that the presented results are affected by the char-
acteristics of the utilized test collection. Therefore, the individual FLMs can perform
differently when applied to other matching scenarios. For instance, the ATTR matcher
does not perform well on our collection because nearly all event classes are associated
with the same set of attributes. However, this may well not be the case for other pro-
cesses, which would result in a better performance of the ATTR measure. Nevertheless,
the test collection does represent a real-world collection with a great variety among its
processes, as described in Section 7.3.2. Therefore, the evaluation still provides useful
insights into the performance of the proposed matching techniques in practical settings.
This especially applies to the performance of the matching ensembles. These ensem-
bles analyze a variety of characteristics, which makes their results less prone to the
specifics of a test collection.

138 7.5. RELATED WORK

7.5 Related Work
The work presented in this chapter relates to two main streams of research: process
model matching and instance-based matching. Section 2.4.4 provides an in-depth
overview of the former stream. The difference between our matching technique and
the numerous existing process model matching techniques is that we take event-log in-
formation into account, rather than focus solely on information contained in the process
models themselves. Since this information is derived from the consideration of process
instances, our work also relates to existing instance-based matching techniques applied
in other domains.

Instance-based matching has been previously explored in the context of schema
matching and the related field of ontology alignment. Engmann and Maßmann [89]
used two methods to enhance their COMA++ matcher. The first, a constraint-based
matcher, identifies the field types using a list of patterns and numerical constraints
attempted over the instance data per attribute. An approach similar to our own VAL
measure. Their second method applies to text-based fields taken from the same do-
main in which the string-similarity of all instances is compared and averaged. A sim-
ilar approach is suggested by Wang et. al. [273] which probe a Web query interfaces
with keywords and then compare the vector-space similarity of the query result to-
kens. A similar approach is applied by Duan et. al. [86], using Locality Sensitive
Hashing (LSH) techniques to compare instances over very large ontologies. Zaiß et.
al. [292] use regular expressions to improve pattern identification of attribute domains.
Our work differs from these works in that we make use of process-unique features to
perform the matching task. For instance, the consideration of execution order, duration,
and prerequisites are characteristics that are specific to the process perspective.

7.6 Summary
In this chapter we proposed instance-based process matching as a new element for the
toolbox of matching process models. We introduced six FLMs that assess the similar-
ity of two event classes from different event logs. Each FLM focuses on a different
conceptual notion of similarity, resulting in a broad coverage of the process informa-
tion stored in event logs. In particular, we presented matchers that quantify similarity
according to: event positions, frequencies, durations, attribute names, attribute values,
and prerequisites. We demonstrated the usefulness of these similarity metrics through a
quantitative evaluation using real-world data. The evaluation showed that by just con-
sidering the information specific to event logs, the introduced matchers can identify
a considerable number of correspondences between event classes. This performance
was particularly achieved when the six FLMs were combined into a single matching
ensemble. As an illustration, the results show that users would need to evaluate just
4% out of all possible correspondences in order to identify nearly 70% of the actual
correspondences. By combining our instance-based matching techniques with tradi-
tional, model-based techniques users can strive to obtain matching results that cannot
be obtained by using either of these techniques alone.

8
Conclusion

This chapter concludes this doctoral thesis. Section 8.1 provides a summary of the
main results. Section 8.2 discusses the implications of the presented work for research
and practice. Finally, Section 8.3 provides an outlook on directions for future research.

8.1 Summary of Results

In this thesis, we focused on the automated analysis of process information contained
in various representation formats. As a basis for the development of these techniques,
we considered why different representation formats are used in organizations and the
problems that can result from this situation. The main contributions of this thesis are
provided by five techniques that focus on the alignment and comparison of process
information in different informational artifacts. We can summarize the main results
presented in this thesis as follows:

• An overview of the causes and consequences of process-information fragmenta-
tion. Based on an analysis of existing literature and a case study, we identified
various reasons for the existence of a variety of process-information artifacts in
organizations, as presented in Chapter 2. Most importantly, different artifacts
are used in order to provide stakeholders with the process information that is
relevant to conduct their tasks, in suitable representation formats. We identified
three main consequences of this spread of process information, i.e., of process-
information fragmentation. First, fragmentation can lead to increased time and
effort required to maintain process information. Because organizations often
struggle with these required efforts, this can also lead process information be-
coming outdated. Second, the fragmentation of process information can nega-
tively affect the execution efficiency of processes. Ultimately, this leads to more
time, effort, and costs required for their execution. Third, when fragmentation
causes users to struggle to find the process information needed to perform their

139

140 8.1. SUMMARY OF RESULTS

tasks, it can even lead to business process noncompliance. Such cases can lead
to reduced quality of process outcomes and the incurrence of financial penalties.
• Inconsistency detection between process models and textual process descrip-

tions. The use of textual process descriptions alongside process models makes
process information more accessible to a variety of stakeholders. However, this
comes with a clear risk that model and text become misaligned, for instance
when process changes are not applied to both descriptions consistently. For or-
ganizations with hundreds of processes, the effort required to manually identify
and clear up such conflicts is considerable. The approach presented in Chap-
ter 3 addresses this problem by automatically detecting inconsistencies between
a process model and a corresponding textual description. A quantitative evalu-
ation using real-world data demonstrates that our approach achieves promising
results. Particularly, our approach detected all model-text pairs in which a pro-
cess model activity was not described in the text or where the order between
process activities differed, with a high precision.
• Behavioral spaces as a means to capture behavioral uncertainty in processes.

Uncertainty about conveyed process behavior plays an important role when an-
alyzing semi-structured representation formats, such as textual process descrip-
tions. Furthermore, uncertainty can result in the context of alignments between
information from different artifacts. Given such uncertainty, it is often impossi-
ble to determine exactly which process behavior is conveyed by a process spec-
ification. Rather, there are numerous potential interpretations of the described
process behavior. In order to still be able to reason about properties such as con-
formance in the context of uncertain behavior, this thesis introduced and applied
the concept of a behavioral space as a means to capture all potential interpreta-
tion of behavioral uncertainty. We showed the need for and usefulness of behav-
ioral spaces to capture uncertainty caused by alignments between process models
and event logs in Chapter 4. Furthermore, Chapter 5 showed their application for
the analysis of ambiguous textual process descriptions.
• Conformance checking in the context of behavioral uncertainty. By capturing

behavioral uncertainty in processes using behavioral spaces, trustworthy con-
formance-checking results can be obtained in situations where existing con-
formance-checking techniques fail to do so. In this thesis, we showed the useful-
ness of behavioral spaces by using them in the context of conformance checking.
The conformance-checking results obtained by our methods are probabilistic,
differentiating between conforming, nonconforming, and potentially conforming
behavior. We applied our method to two scenarios in order to illustrate the utility
of behavioral spaces for conformance checking. Chapter 4 showed that behav-
ioral spaces allow us to obtain conformance-checking results for numerous cases
where traditional conformance-checking techniques cannot be applied. Simi-
larly, Chapter 5 showed that the use of behavioral spaces provides a much better
basis for conformance checking than other, naive ways of dealing with ambiguity
in textual process descriptions.
• Transformation of natural language descriptions into measurable Process Per-

formance Indicators (PPIs). The unstructured natural language used by man-
agers to specify relevant PPIs differs considerably from the structured, formal

CHAPTER 8. CONCLUSION 141

definitions required to actually monitor them. The time and effort required to
transform the natural language descriptions into a suitable format impedes the
effectiveness with which organizations can monitor their process performance.
To overcome this problem, Chapter 6 presented an approach that automates the
transformation task. A quantitative evaluation with a set of real-world PPI de-
scriptions and accompanying process models revealed that our approach gener-
ates PPI definitions that are highly similar to those created manually. Therefore,
our approach represents a viable, automated alternative to an otherwise highly
laborious and time-intensive, manual task. This enables organizations to more
efficiently monitor the performance of their business processes and continuously
adapt their monitoring activities to changing business needs.
• Process model matching based on event-log information. Process model match-

ing provides the basis for many process analysis techniques, such as inconsis-
tency detection and process querying. Chapter 7 introduced a technique that
uses event-log information in process model matching. Our matching technique
builds on six conceptual notions of similarity between event classes. Further-
more, we provided various operationalizations that quantify these conceptual
notions. We demonstrated the usefulness of these similarity metrics through a
quantitative evaluation using real-world data. The evaluation showed that by
just considering the information specific to event logs, the introduced matchers
can identify a considerable number of correspondences between event classes.
By combining our instance-based matching techniques with traditional, model-
based techniques users can strive to obtain matching results that cannot be ob-
tained by using either of these techniques alone. In this way, the accuracy and,
therefore, usefulness of techniques that build on process model alignments is
improved.

To achieve these results, we followed internationally established standards applica-
ble to IS research, conducted according to the behavioral science and design science
paradigms [122]. Most importantly, this involved addressing relevant problems and
evaluating our proposed solutions using appropriate metrics and relevant, real-world
data collections. In this way, our results represent a significant contribution to the body
of knowledge of the IS research discipline.

8.2 Implications

In this section, we consider the implications of the work presented in this thesis. Sec-
tion 8.2.1 reflects on the implications for practice and Section 8.2.2 on the implications
for research.

8.2.1 Implications for Practice
The work presented in this thesis has several implications for organizations that strive
to improve their organizational efficiency and process quality. In particular, we identify
the following main implications for practice:

142 8.2. IMPLICATIONS

• Insights for improved management of process information. Our analysis of the
causes and consequences of process-information fragmentation, presented in
Chapter 2, shows the importance of the proper management of informational
artifacts for organizations. In particular, organizations should strive to make the
right process information available to stakeholders in suitable formats. How-
ever, organizations should simultaneously ensure that this fragmentation does
not result in a situation in which process cannot be maintained or found. A
main threat in this regard is the ad-hoc creation of process-information artifacts,
which reduces the traceability that exists between process information in differ-
ent artifacts. Therefore, organizations should aim to establish guidelines for the
creation and maintenance of process information. In this way, process informa-
tion becomes easy to retrieve and stays in sync with the correct way to execute
the process it describes.
• More efficient resolution of inconsistencies among process representations. Al-

though organizations often use multiple process representation formats in or-
der to provide different stakeholders with information in a suitable format, this
comes with the clear risk that the different representations do not convey the same
information about a process. Our inconsistency-detection technique presented in
Chapter 3 enables organizations to automatically detect such inconsistencies be-
tween process models and textual process descriptions. By using our approach,
organizations can more efficiently detect and, therefore, resolve inconsistencies
that exist in their process documentation. In this way, organizations can save
considerable amounts of time and effort. This especially applies to organizations
with large process repositories, possibly containing information on hundreds of
processes.
• Increased adaptability of process performance monitoring. The monitoring of

business processes represents an important prerequisite for organizations to im-
prove their processes and, in this way, maintain a competitive advantage. This
monitoring task is greatly affected by the continuous changes to which business
processes and their environments are subject. As a result, organizations should
continuously adapt the way in which they monitor their processes to these shifts.
Our transformation approach presented in Chapter 6 supports organizations in
this endeavor. The approach bridges the Business-IT gap that exists between
the managers that specify the performance indicators to be monitored and the
systems engineers involved in the actual monitoring of these indicators. In par-
ticular, it enables managers to specify automatically measurable PPIs without
precarious and time-consuming communication with system engineers. In this
way, our approach enables organizations to more easily adapt the monitoring of
their business processes to emergent changes.
• Improved detection and prevention of business process noncompliance. Business

process noncompliance can pose considerable threats to organizations. Noncom-
pliant actions can lead to reduced efficiency, reduced process quality, and even
to the incurrence of financial penalties. In this thesis, we presented two novel
conformance-checking techniques that improve the ability of organizations to
detect nonconforming behavior. Chapter 4 presented a technique that enables
the detection of nonconformance in a more trustworthy manner than traditional

CHAPTER 8. CONCLUSION 143

techniques. In particular, our technique avoids the need to impose, possibly in-
correct, assumptions on the relations between observed events and a process
model. Chapter 5 expands the applicability of conformance-checking techniques
from merely structured process representations, to semi-structured representa-
tions, specifically in the form of textual process descriptions. In this way, we
enabled conformance checking to take the wealth of process information that is
stored in natural language documents into account. Ultimately, the presented
techniques improve the detection of business process noncompliance, leading to
increased organizational efficiency and process quality.

8.2.2 Implications for research
The work presented in this thesis has several implications for research in the field of
business process management as well as IS research, in particular for the management
and alignment of process information.

• Comparison and alignment of process information in semi-structured formats.
Establishing alignments between process-information artifacts is an important
prerequisite for the development of a variety of process analysis techniques, such
as inconsistency detection, update propagation, and process querying. Most ex-
isting techniques focus on the creation of alignments between structured pro-
cess representation formats, in the form of process models or process models
and event logs. In this thesis, Chapters 3 and 6 presented techniques that align
process information from other representation formats, specifically from textual
process descriptions and natural language PPI descriptions. In this way, our re-
search provides a basis for the development of analysis techniques that build
on the alignments established by our techniques. Furthermore, our research
also shows the potential for the development of further automated analysis tech-
niques, specifically those that focus on process information contained in other
semi-structured informational artifacts that have so far been largely ignored by
research.
• Enabled reasoning in the presence of behavioral uncertainty. Uncertainty about

process behavior plays a prominent role when analyzing unstructured or semi-
structured process-information artifacts, as well as when reasoning based on
automatically established alignments between artifacts. Our work presented in
Chapters 4 and 5 has important implications in this regard. The introduction of
the concept of behavioral spaces provides a structured manner to capture all pos-
sible interpretations of uncertain process behavior. By doing so, process analysis
techniques can be applied without the need to select a single, possibly incorrect,
interpretation of the process behavior. This demonstrates that the use of be-
havioral spaces opens up numerous possibilities for the development of process
analysis techniques that were previously deemed unfruitful because of ambiguity
or other causes of uncertainty.
• Improved process model matching through the consideration of event-log infor-

mation. Alignments between process models provide an important basis for a
variety of application scenarios and techniques. These alignments are, for in-

144 8.3. FUTURE RESEARCH

stance, used to detect differences between models, for the harmonization of pro-
cess model variants, process querying, and for the automated propagation of
process changes. The accuracy and, therefore, usefulness of such techniques is
highly dependent on the correctness and completeness of the alignments that are
established by process model matching techniques. In Chapter 7, we showed
that the quality of these results can be improved through the consideration of
event-log information. In particular, by considering the contents of event logs in
the matching tasks, alignment results can be obtained that model-based match-
ers cannot achieve. Therefore, our research supports the usefulness of analysis
techniques that build on process model alignments because it can lead to an im-
proved alignment quality. Furthermore, our results show that the consideration of
instance-level information can be worthwhile in future development of process
model matching techniques.

8.3 Future Research

This doctoral thesis focused on the fragmentation of process information and, in par-
ticular, on technological developments that can mitigate its consequences. The work
presented in this thesis opens up possibilities for further research that pursues the ef-
ficient use and maintenance of process information within organizations. In this pur-
suit, we can distinguish two general perspectives to mitigate the negative aspects of
process-information fragmentation: the technical and the organizational perspective.
The technical perspective focuses on mitigation by providing technical solutions to
specific problems caused fragmentation. By contrast, the organizational perspective
focuses on mitigation by reducing the extent of fragmentation itself.

8.3.1 Technical Perspective
This thesis primarily takes a technical perspective to mitigate the effects of process-
information fragmentation. We presented conceptual and technical developments that
focus on the more efficient use and maintenance of process information spread out over
various artifacts. Different opportunities for future research stem from these develop-
ments.

A variety of scenarios in which organizations struggle with the impact of process-
information fragmentation remain unaddressed by existing research. In particular, fu-
ture research can focus on the development of techniques that (i) focus on more process
perspectives, (ii) cover additional representation formats and (ii) that address additional
use cases.

(i) Most of the techniques presented in this thesis focus on the comparison of pro-
cess information from a control-flow perspective. While this is arguably the
most relevant perspective in process analysis, it is important to recognize that the
presented techniques could be extended to also consider, for example, the tem-
poral, resource, and data perspectives. For instance, the consistency-checking
technique from Chapter 3 could be extended to also detect inconsistencies with

CHAPTER 8. CONCLUSION 145

respect to the resources that should execute activities according to the process
descriptions;

(ii) Regarding the coverage of additional representation formats, we primarily see
opportunities to develop alignment and comparison techniques that focus on pro-
cess information contained in slide sets, checklists, and spreadsheets. The use
of these representation formats has been recognized in literature and observed
in our case study, as discussed in Section 2.1.4. However, these formats are
currently not yet covered by existing alignment techniques;

(iii) Aside from broadening the spectrum of considered formats, techniques can also
be developed that address use cases beyond the comparison and alignment of
process information. For instance, our technique presented in Chapter 3 aims
to detect inconsistencies between process model and textual descriptions, which
can be used to detect changes between the process representations. Instead, by
automatically propagating the effects of process changes from one representa-
tion to the other, process consistency can be ensured, rather than just detected.
The conceptual contributions presented in this thesis can be particularly help-
ful in the pursuit of such new research directions. For instance, the approach
used to extract process information from textual process descriptions and textual
PPI descriptions can be utilized to support the extraction of process information
from other semi-structured artifacts. Furthermore, the concept of a behavioral
space can be applied to use cases in which the extraction or alignment of process
information cannot provide deterministic results.

In this thesis, and in the above reflection, we have so far focused on application
scenarios of alignment techniques in isolation. Typically, existing research focuses on
the alignment or comparison of two informational artifacts. However, as discussed in
Section 2.1.4, realistic settings can involve much larger numbers of informational arti-
facts related to a single process. It is for those processes that the problems caused by
fragmentation can be me the most pressing. To better support such scenarios, research
should strive for integrated solutions that enable the use and maintenance of all infor-
mation related to a process and, even, entire process repositories, rather than consider
pairs of informational artifacts in isolation. The main prerequisite for such support is
that traceability should be established between process information from all artifacts.
Note that the provision of holistic support through such techniques differs considerably
from the use of data warehouses to accomplish similar goals. Data warehouses require
a considerable overhaul of the way in which organizational members capture process
information in the first place. By contrast, by using techniques such as presented and
proposed in this thesis, organizational members can still document process information
in the format that they prefer, whether this is a process model, a textual description, or
any other representation format of choice.

Organizational Perspective

Although this thesis mainly focused on the technological perspective, the organiza-
tional perspective also plays an important role when dealing with process information
in organizations. In particular, by taking this perspective into consideration, the nega-
tive aspects associated with process-information fragmentation can already be partially

146 8.3. FUTURE RESEARCH

avoided, reducing the need for their later mitigation. This thesis, in particular Sec-
tion 2.1.4, already showed the crucial nature of taking such steps to reduce the effects
of fragmentation. This can, for instance, be achieved by introducing guidelines that
change the way in which organizations capture process information. However, further
research is required in order to better understand how to achieve the desired effects.
Currently, research that addresses the question of how to best capture process infor-
mation has primarily focused on the suitability of representation formats for specific
tasks (cf. [55, 93]. A main problem is that these scenarios and, therefore, also the use-
fulness of representation formats are typically considered in isolation, generally using
experimental settings. There is limited reflection on how or why these representation
formats co-exist in practical settings, let alone that these questions are investigated.
Nevertheless, insights into this direction are necessary, because it is this co-existence
that leads to problems when using and maintaining process information. A main di-
rection to investigate in this regard is the trade-off that exists between the benefits of
using more artifacts to provide stakeholders with the information they need versus the
negative aspects associated with such further process-information fragmentation. Put
differently, when does the creation of more process-information artifacts help stake-
holders by providing them with the information they need and when does it reduce the
ability of stakeholders to actually find this information? By answering such questions,
important insights can be obtained that will enable organizations to manage their pro-
cess information in a more considerate manner. Therefore, such insights would help
organizations to further improve their efficiency and provide higher quality results.

Bibliography

[1] Van der Aa, H., Del-Rı́o-Ortega, A., Resinas, M., Leopold, H., Ruiz-Cortés,
A., Mendling, J., Reijers, H.A.: Narrowing the business-IT gap in process per-
formance measurement. In: International Conference on Advanced Information
Systems Engineering. pp. 543–557. Springer (2016)

[2] Van der Aa, H., Gal, A., Leopold, H., Reijers, H.A., Sagi, T., Shraga, R.:
Instance-based process matching using event-log information. In: Interna-
tional Conference on Advanced Information Systems Engineering. pp. 283–297.
Springer (2017)

[3] Van der Aa, H., Leopold, H., Batoulis, K., Weske, M., Reijers, H.A.: Integrated
process and decision modeling for data-driven processes. In: Business Process
Management Workshops. pp. 405–417. Springer (2015)

[4] Van der Aa, H., Leopold, H., Mannhardt, F., Reijers, H.A.: On the fragmentation
of process information: Challenges, solutions, and outlook. In: International
Conference on Enterprise, Business-Process and Information Systems Model-
ing, pp. 3–18. Springer (2015)

[5] Van der Aa, H., Leopold, H., Reijers, H.A.: Detecting inconsistencies between
process models and textual descriptions. In: International Conference on Busi-
ness Process Management, pp. 90–105. Springer (2015)

[6] Van der Aa, H., Leopold, H., Reijers, H.A.: Dealing with behavioral ambiguity
in textual process descriptions. In: International Conference on Business Process
Management. pp. 271–288. Springer (2016)

[7] Van der Aa, H., Leopold, H., Reijers, H.A.: Checking process compliance on
the basis of uncertain event-to-activity mappings. In: International Conference
on Advanced Information Systems Engineering. pp. 79–93. Springer (2017)

[8] Van der Aa, H., Leopold, H., Reijers, H.A.: Comparing textual descriptions to
process models: The automatic detection of inconsistencies. Information Sys-
tems 64, 447–460 (2017)

147

148 BIBLIOGRAPHY

[9] Van der Aa, H., Leopold, H., del Rio-Ortega, A., Resinas, M., Reijers, H.A.:
Transforming unstructured natural language descriptions into measurable pro-
cess performance indicators using hidden markov models. Information Systems
71, 27–39 (2017)

[10] Van der Aa, H., Leopold, H., van de Weerd, I., Reijers, H.A.: Causes and conse-
quences of fragmented process information: Insights from a case study. In: 23rd
Americas Conference on Information Systems, AMCIS (2017)

[11] Van der Aa, H., Reijers, H.A., Vanderfeesten, I.: Composing workflow activities
on the basis of data-flow structures. In: International Conference on Business
Process Management, pp. 275–282. Springer (2013)

[12] Van der Aa, H., Reijers, H.A., Vanderfeesten, I.: Designing like a pro: The
automated composition of workflow activities. Computers in industry 75, 162–
177 (2016)

[13] Van der Aalst, W.M.P.: Process Mining: Discovery, Conformance, and Enhance-
ment of Business Processes. Springer (2011)

[14] Van der Aalst, W.M.P., Adriansyah, A., De Medeiros, A.K.A., Arcieri, F., Baier,
T., Blickle, T., Bose, J.C., et al.: Process mining manifesto. In: International
Conference on Business Process Management. pp. 169–194. Springer (2011)

[15] Van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on
process models for conformance checking and performance analysis. Wiley In-
terdisciplinary Reviews: Data Mining and Knowledge Discovery 2(2), 182–192
(2012)

[16] Van der Aalst, W.M.P., van Hee, K.M., van Werf, J.M., Verdonk, M.: Auditing
2.0: using process mining to support tomorrow’s auditor. Computer 43(3), 90–
93 (2010)

[17] Van der Aalst, W.M.P., Ter Hofstede, A.H., Weske, M.: Business process man-
agement: A survey. In: International conference on business process manage-
ment. pp. 1–12. Springer (2003)

[18] Van der Aalst, W.M.P., Van Hee, K.M.: Workflow management: models, meth-
ods, and systems. MIT press (2004)

[19] Van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discover-
ing process models from event logs. IEEE Transactions on Knowledge and Data
Engineering 16(9), 1128–1142 (2004)

[20] Abiteboul, S., Kanellakis, P., Grahne, G.: On the representation and querying of
sets of possible worlds. SIGMOD Rec. 16(3), 34–48 (Dec 1987)

[21] Accorsi, R., Stocker, T.: On the exploitation of process mining for security au-
dits: the conformance checking case. In: Proceedings of the 27th Annual ACM
Symposium on Applied Computing. pp. 1709–1716. ACM (2012)

[22] Achananuparp, P., Hu, X., Shen, X.: The evaluation of sentence similarity mea-
sures. In: Data Warehousing and Knowledge Discovery, pp. 305–316. Springer
(2008)

[23] Achour, C.B.: Guiding scenario authoring1. Information Modelling and Knowl-
edge Bases X 51, 152 (1999)

[24] Adriansyah, A., van Dongen, B., Van der Aalst, W.M.P.: Conformance checking
using cost-based fitness analysis. In: Enterprise Distributed Object Computing
Conference (EDOC), 2011 15th IEEE International. pp. 55–64. IEEE (2011)

BIBLIOGRAPHY 149

[25] Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applica-
tions. IEEE Transactions on Knowledge and Data Engineering 21(5), 609–623
(2009)

[26] Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., Soroa, A.: A study
on similarity and relatedness using distributional and wordnet-based approaches.
In: Proceedings of Human Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Association for Computational Lin-
guistics. pp. 19–27. Association for Computational Linguistics (2009)

[27] Alavi, M., Leidner, D.E.: Review: Knowledge management and knowledge
management systems: Conceptual foundations and research issues. MIS quar-
terly pp. 107–136 (2001)

[28] Algergawy, A., Nayak, R., Saake, G.: Element similarity measures in xml
schema matching. Information Sciences 180(24), 4975–4998 (2010)

[29] Allweyer, T.: BPMN 2.0: introduction to the standard for business process mod-
eling. BoD–Books on Demand (2010)

[30] Alter, S.: Beneficial noncompliance and detrimental compliance: Expected
paths to unintended consequences. In: Americas Conference on Information
Systems (2015)

[31] Andrade, E., van der Aa, H., Leopold, H., Alter, S., Reijers, H.A.: Factors lead-
ing to business process noncompliance and its positive and negative effects: Em-
pirical insights from a case study. In: 22nd Americas Conference on Information
Systems, AMCIS (2016)

[32] Antunes, G., Bakhshandeh, M., Borbinha, J., Cardoso, J., Dadashnia, S.,
Di Francescomarino, C., Dragoni, M., Fettke, P., Gal, A., Ghidini, C., et al.: The
process model matching contest 2015. GI-Edition/Proceedings: Lecture notes in
informatics 248, 127–155 (2015)

[33] Awad, A., Decker, G., Weske, M.: Efficient compliance checking using bpmn-q
and temporal logic. In: International Conference on Business Process Manage-
ment. pp. 326–341. Springer (2008)

[34] Backus, J.W.: The syntax and semantics of the proposed international algebraic
language of the zurich acm-gamm conference. Proceedings of the International
Conference on Information Processing, 1959 (1959)

[35] Bagayogo, F., Beaudry, A., Lapointe, L.: Impacts of it acceptance and resistance
behaviors: a novel framework. In: 34th International Conference on Information
Systems (ICIS) (2013)

[36] Bahl, L.R., Mercer, R.L.: Part of speech assignment by a statistical decision
algorithm. In: Proceedings IEEE International Symposium on Information The-
ory. pp. 88–89 (1976)

[37] Baier, T., Di Ciccio, C., Mendling, J., Weske, M.: Matching of events and
activities-an approach using declarative modeling constraints. In: International
Conference on Enterprise, Business-Process and Information Systems Model-
ing. pp. 119–134. Springer (2015)

[38] Baier, T., Di Ciccio, C., Mendling, J., Weske, M.: Matching events and activ-
ities by integrating behavioral aspects and label analysis. Software & Systems
Modeling pp. 1–26 (2017)

150 BIBLIOGRAPHY

[39] Baier, T., Mendling, J.: Bridging abstraction layers in process mining by auto-
mated matching of events and activities. In: International Conference on Busi-
ness Process Management, pp. 17–32. Springer (2013)

[40] Baier, T., Mendling, J., Weske, M.: Bridging abstraction layers in process min-
ing. Information Systems 46, 123–139 (2014)

[41] Baier, T., Rogge-Solti, A., Weske, M., Mendling, J.: Matching of events and
activities-an approach based on constraint satisfaction. In: IFIP Working Con-
ference on The Practice of Enterprise Modeling. pp. 58–72. Springer (2014)

[42] Bajwa, I.S., Choudhary, M.A.: From natural language software specifications to
UML class models. In: Enterprise Information Systems, pp. 224–237. Springer
(2012)

[43] Basten, T., Van der Aalst, W.M.P.: Inheritance of behavior. The Journal of Logic
and Algebraic Programming 47(2), 47–145 (2001)

[44] Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodolo-
gies for database schema integration. ACM computing surveys (CSUR) 18(4),
323–364 (1986)

[45] Becker, J., Delfmann, P., Herwig, S., Lis, L., Stein, A.: Formalizing linguistic
conventions for conceptual models. In: Conceptual Modeling - ER 2009, pp.
70–83. LNCS, Springer Berlin Heidelberg (2009)

[46] Becker, J., Kugeler, M., Rosemann, M.: Process management: a guide for the
design of business processes. Springer Science & Business Media (2013)

[47] Bernstein, P.A., Rahm, E.: Data warehouse scenarios for model management. In:
International Conference on Conceptual Modeling. pp. 1–15. Springer (2000)

[48] Bird, S., Klein, E., Loper, E.: Natural language processing with Python: analyz-
ing text with the natural language toolkit. O’Reilly Media, Inc. (2009)

[49] Born, M., Dörr, F., Weber, I.: User-Friendly Semantic Annotation in Business
Process Modeling. In: WISE 2007 Workshops, LNCS, vol. 4832, pp. 260–271.
Springer (2007)

[50] Box, G.E.: Robustness in the strategy of scientific model building. Robustness
in statistics 1, 201–236 (1979)

[51] Brants, T.: Tnt: a statistical part-of-speech tagger. In: Proceedings of the sixth
conference on Applied natural language processing. pp. 224–231. Association
for Computational Linguistics (2000)

[52] Brewer, P., Speh, T.: Using the balance scorecard to measure supply chain per-
formance. Journal of Business Logistics 21, 75–93 (2000)

[53] Brill, E.: Some advances in transformation-based part of speech tagging. arXiv
preprint cmp-lg/9406010 (1994)

[54] Brown, P.F., Pietra, V.J.D., Pietra, S.A.D., Mercer, R.L.: The mathematics of
statistical machine translation: Parameter estimation. Computational linguistics
19(2), 263–311 (1993)

[55] Browning, T.R.: On the alignment of the purposes and views of process mod-
els in project management. Journal of Operations Management 28(4), 316–332
(2010)

[56] Budanitsky, A., Hirst, G.: Evaluating wordnet-based measures of lexical seman-
tic relatedness. Computational Linguistics 32(1), 13–47 (2006)

BIBLIOGRAPHY 151

[57] Cavnar, W.B., Trenkle, J.M., et al.: N-gram-based text categorization. Ann Ar-
bor MI 48113(2), 161–175 (1994)

[58] Cayoglu, U., Dijkman, R.M., Dumas, M., Fettke, P., Garcıa-Banuelos, L., Hake,
P., Klinkmüller, C., Leopold, H., Ludwig, A., Loos, P., et al.: The process model
matching contest 2013. In: 4th International Workshop on Process Model Col-
lections: Management and Reuse (PMC-MR’13) (2013)

[59] Chaffey, D., White, G.: Business information management: improving perfor-
mance using information systems. Pearson Education (2010)

[60] Chakraborty, S., Sarker, S., Sarker, S.: An exploration into the process of re-
quirements elicitation: A grounded approach. J. AIS 11(4) (2010)

[61] Chan, F.: Performance measurement in a supply chain. International Journal of
Advanced Manufacturing Technology 21, 534–548 (2003)

[62] Chaudhuri, S., Dayal, U.: An overview of data warehousing and olap technol-
ogy. ACM Sigmod record 26(1), 65–74 (1997)

[63] Chesani, F., Mello, P., Montali, M., Riguzzi, F., Sebastianis, M., Storari, S.:
Checking compliance of execution traces to business rules. In: International
Conference on Business Process Management. pp. 134–145. Springer (2008)

[64] Chomsky, N.: Three models for the description of language. IRE Transactions
on information theory 2(3), 113–124 (1956)

[65] Church, K.W.: A stochastic parts program and noun phrase parser for un-
restricted text. In: Proceedings of the second conference on Applied natural
language processing. pp. 136–143. Association for Computational Linguistics
(1988)

[66] Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string metrics for
matching names and records. In: Kdd workshop on data cleaning and object
consolidation. vol. 3, pp. 73–78 (2003)

[67] Costello, C., Molloy, O.: Building a process performance model for business ac-
tivity monitoring. In: Information Systems Development, pp. 237–248. Springer
US (2009)

[68] Crubézy, M., Musen, M.A.: Ontologies in support of problem solving. In: Hand-
book on ontologies, pp. 321–341. Springer (2004)

[69] Cutting, D., Kupiec, J., Pedersen, J., Sibun, P.: A practical part-of-speech tagger.
In: Proceedings of the third conference on Applied natural language processing.
pp. 133–140. Association for Computational Linguistics (1992)

[70] Damashek, M.: Gauging similarity with n-grams: Language-independent cate-
gorization of text. Science 267(5199), 843 (1995)

[71] Davenport, T.H., Short, J.E.: The new industrial engineering: information tech-
nology and business process redesign. Sloan Management Review pp. 11–27
(1990)

[72] Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How do practition-
ers use conceptual modeling in practice? Data & Knowledge Engineering 58(3),
358–380 (2006)

[73] De Marneffe, M.C., MacCartney, B., Manning, C.D., et al.: Generating typed de-
pendency parses from phrase structure parses. In: Proceedings of LREC. vol. 6,
pp. 449–454 (2006)

152 BIBLIOGRAPHY

[74] De Marneffe, M.C., Manning, C.D.: The stanford typed dependencies represen-
tation. In: Coling 2008: Proceedings of the workshop on Cross-Framework and
Cross-Domain Parser Evaluation. pp. 1–8 (2008)

[75] Dellarocas, C., Klein, M.: A knowledge-based approach for designing robust
business processes. In: Business Process Management, pp. 50–65. Springer
(2000)

[76] Denning, P.J.: A new social contract for research. Communications of the ACM
40(2), 132–134 (1997)

[77] DeRose, S.J.: Grammatical category disambiguation by statistical optimization.
Computational linguistics 14(1), 31–39 (1988)

[78] Di Ciccio, C., Van der Aa, H., Cabanillas, C., Mendling, J., Prescher, J.: Detect-
ing flight trajectory anomalies and predicting diversions in freight transportation.
Decision Support Systems 88, 1–17 (2016)

[79] Dijkman, R.M., Dumas, M., Garcı́a-Bañuelos, L.: Graph matching algorithms
for business process model similarity search. In: International Conference on
Business Process Management, pp. 48–63. Springer (2009)

[80] Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and analysis of
bpmn process models using petri nets. Queensland University of Technology,
Tech. Rep (2007)

[81] Dijkman, R.M., Dumas, M., Van Dongen, B., Käärik, R., Mendling, J.: Simi-
larity of business process models: Metrics and evaluation. Information Systems
36(2), 498–516 (2011)

[82] Doddington, G.R., Mitchell, A., Przybocki, M.A., Ramshaw, L.A., Strassel, S.,
Weischedel, R.M.: The automatic content extraction (ace) program-tasks, data,
and evaluation. In: LREC. vol. 2, p. 1 (2004)

[83] van Dongen, B.: Bpi challenge 2015 (2015), https://doi.org/10.4121/
uuid:31a308ef-c844-48da-948c-305d167a0ec1

[84] Dorow, B., Widdows, D.: Discovering corpus-specific word senses. In: Pro-
ceedings of the tenth conference on European chapter of the Association for
Computational Linguistics-Volume 2. pp. 79–82. Association for Computational
Linguistics (2003)

[85] Dou, D., McDermott, D., Qi, P.: Ontology translation on the semantic web.
In: OTM Confederated International Conferences” On the Move to Meaningful
Internet Systems”. pp. 952–969. Springer (2003)

[86] Duan, S., Fokoue, A., Hassanzadeh, O., Kementsietsidis, A., Srinivas, K., Ward,
M.J.: Instance-based matching of large ontologies using locality-sensitive hash-
ing. In: International Semantic Web Conference. pp. 49–64. Springer (2012)

[87] Dumas, M., Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer (2013)

[88] Earley, J.: An efficient context-free parsing algorithm. Communications of the
ACM 13(2), 94–102 (1970)

[89] Engmann, D., Maßmann, S.: Instance matching with COMA++. In: BTW
Workshops. pp. 28–37 (2007)

[90] Epure, E.V., Martı́n-Rodilla, P., Hug, C., Deneckère, R., Salinesi, C.: Automatic
process model discovery from textual methodologies. In: Research Challenges

https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1

BIBLIOGRAPHY 153

in Information Science (RCIS), 2015 IEEE 9th International Conference on. pp.
19–30. IEEE (2015)

[91] Fahey, L., Prusak, L.: The eleven deadliest sins of knowledge management.
California management review 40(3), 265–276 (1998)

[92] Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis
on demand: Instantaneous soundness checking of industrial business process
models. Data & Knowledge Engineering 70(5), 448–466 (2011)

[93] Figl, K., Recker, J.: Exploring cognitive style and task-specific preferences for
process representations. Requirements Engineering 21(1), 63–85 (2016)

[94] Fisher, B.: Reengineering your business process. Journal of Systems Manage-
ment 47(1), 46 (1996)

[95] Forney Jr, G.D.: The viterbi algorithm. Proceedings of the IEEE 61(3), 268–278
(1973)

[96] Franceschini, F., Galetto, M., Maisano, D.: Management by measurement: De-
signing key indicators and performance measurement systems. Springer (2007)

[97] Francescomarino, C., Tonella, P.: Supporting Ontology-Based Semantic An-
notation of Business Processes with Automated Suggestions. In: International
Conference on Enterprise, Business-Process and Information Systems Model-
ing, LNBIP, vol. 29, pp. 211–223. Springer (2009)

[98] Francis, W., Kucera, H.: Frequency analysis of english usage. Journal of English
Linguistics 18 (1982)

[99] Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural
language text. In: International Conference on Advanced Information Systems
Engineering. pp. 482–496. Springer (2011)

[100] Gacitua-Decar, V., Pahl, C.: Automatic business process pattern matching for
enterprise services design. In: Services-II, 2009. SERVICES-2’09. World Con-
ference on. pp. 111–118. IEEE (2009)

[101] Gal, A., Anaby-Tavor, A., Trombetta, A., Montesi, D.: A framework for mod-
eling and evaluating automatic semantic reconciliation. VLDBJ 14(1), 50–67
(2005)

[102] Gal, A., Weidlich, M.: Model matching - processes and beyond. In: Interna-
tional Conference on Advanced Information Systems Engineering. pp. 525–526.
Springer (2015)

[103] Gal, A.: Uncertain schema matching. Synthesis Lectures on Data Management
3(1), 1–97 (2011)

[104] Gal, A., Sagi, T.: Tuning the ensemble selection process of schema matchers.
Information Systems 35(8), 845–859 (2010)

[105] Galil, Z., Micali, S., Gabow, H.: An o(ev\logv) algorithm for finding a maximal
weighted matching in general graphs. SIAM Journal on Computing 15(1), 120–
130 (1986)

[106] Garside, R., Leech, G.N., McEnery, T.: Corpus annotation: linguistic informa-
tion from computer text corpora. Taylor & Francis (1997)

[107] Ge, N., Hale, J., Charniak, E.: A statistical approach to anaphora resolution. In:
Proceedings of the sixth workshop on very large corpora. vol. 71, p. 76 (1998)

[108] Ghose, A., Koliadis, G., Chueng, A.: Process discovery from model and text
artefacts. In: Services, 2007 IEEE Congress on. pp. 167–174. IEEE (2007)

154 BIBLIOGRAPHY

[109] Giunchiglia, F., Shvaiko, P., Yatskevich, M.: Semantic matching. In: Encyclo-
pedia of Database Systems, pp. 2561–2566. Springer (2009)

[110] Gomez, F., Segami, C., Delaune, C.: A system for the semiautomatic gener-
ation of ER models from natural language specifications. Data & Knowledge
Engineering 29(1), 57–81 (1999)

[111] de Gonçalves, J.C., Santoro, F.M., Baiao, F.A.: Business process mining from
group stories. In: Computer Supported Cooperative Work in Design, 2009.
CSCWD 2009. 13th International Conference on. pp. 161–166. IEEE (2009)

[112] González, O., Casallas, R., Deridder, D.: MMC-BPM: A Domain-Specific Lan-
guage for Business Processes Analysis. Business Information Systems 21, 157–
168 (2009)

[113] Goodhue, D.L., Thompson, R.L.: Task-technology fit and individual perfor-
mance. MIS quarterly pp. 213–236 (1995)

[114] Gorin, A.L., Riccardi, G., Wright, J.H.: How may I help you? Speech commu-
nication 23(1), 113–127 (1997)

[115] Greene, B.B., Rubin, G.M.: Automatic grammatical tagging of English. Depart-
ment of Linguistics, Brown University (1971)

[116] Grefenstette, G.: Explorations in automatic thesaurus discovery, volume 278 of
the springer international series in engineering and computer science (1994)

[117] Gregor, S.: The nature of theory in information systems. MIS quarterly pp. 611–
642 (2006)

[118] Griffiths, T.V., Petrick, S.R.: On the relative efficiencies of context-free gram-
mar. Communications of the ACM 8(5), 289–300 (1965)

[119] Gruber, T.R., et al.: A translation approach to portable ontology specifications.
Knowledge acquisition 5(2), 199–220 (1993)

[120] Gruhn, V., Laue, R.: Detecting Common Errors in Event-Driven Process Chains
by Label Analysis. Enterprise Modelling and Information Systems Architectures
6(1), 3–15 (2011)

[121] Hammer, M., Champy, J.: Reengineering the Corporation: Manifesto for Busi-
ness Revolution, A. Zondervan (2009)

[122] Hevner, A., March, S.T., Park, J., Ram, S.: Design science in information sys-
tems research. MIS quarterly 28(1), 75–105 (2004)

[123] Hidders, J., Dumas, M., Van der Aalst, W.M.P., ter Hofstede, A.H., Verelst, J.:
When are two workflows the same? In: Proceedings of the 2005 Australasian
symposium on Theory of computing-Volume 41. pp. 3–11. Australian Computer
Society, Inc. (2005)

[124] Hill, J.B., Cantara, M., Kerremans, M., Plummer, D.: Magic quadrant for busi-
ness process management suites, 2007. Gartner RAS Core Research Note G
152906 (2007)

[125] Hobbs, J.R.: Resolving pronoun references. Lingua 44(4), 311–338 (1978)
[126] Imieliński, T., Lipski Jr, W.: Incomplete information in relational databases.

Journal of the ACM (JACM) 31(4), 761–791 (1984)
[127] Indurkhya, N., Damerau, F.J.: Handbook of natural language processing. Chap-

man and Hall/CRC (2010)

BIBLIOGRAPHY 155

[128] Islam, A., Inkpen, D.: Second order co-occurrence pmi for determining the se-
mantic similarity of words. In: Proceedings of the International Conference on
Language Resources and Evaluation, Genoa, Italy. pp. 1033–1038 (2006)

[129] ISR: Editorial statement and policy. Information Systems Research 13(4), inside
front cover (2002)

[130] Jackson, P., Moulinier, I.: Natural language processing for online applications:
Text retrieval, extraction and categorization, vol. 5. John Benjamins Publishing
(2007)

[131] Jin, T., Wang, J., La Rosa, M., Ter Hofstede, A., Wen, L.: Efficient querying of
large process model repositories. Computers in Industry 64(1), 41–49 (2013)

[132] Joshi, A.K.: Natural language processing. Science 253(5025), 1242 (1991)
[133] Jung, J.Y., Bae, J.: Workflow clustering method based on process similarity. In:

International Conference on Computational Science and Its Applications. pp.
379–389. Springer (2006)

[134] Jung, J., Choi, I., Song, M.: An integration architecture for knowledge manage-
ment systems and business process management systems. Computers in industry
58(1), 21–34 (2007)

[135] Jurafsky, D., Martin, J.H.: Speech & language processing. Pearson Education
India (2000)

[136] Jurish, B.: A hybrid approach to part-of-speech tagging. Final Report at Berlin-
Brandenburgische Akademie der Wissenschaften, Berlin (2003)

[137] Kaplan, R.S., Norton, D.P.: The balanced scorecard: measures that drive perfor-
mance. Harvard Business Review 83(7), 172 (2005)

[138] Karlsson, F., Voutilainen, A., Heikkilae, J., Anttila, A.: Constraint Grammar:
a language-independent system for parsing unrestricted text, vol. 4. Walter de
Gruyter (1995)

[139] Kettinger, W.J., Teng, J.T., Guha, S.: Business process change: a study of
methodologies, techniques, and tools. MIS quarterly pp. 55–80 (1997)

[140] Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of
the 41st Annual Meeting of the ACL-Volume 1. pp. 423–430. ACL (2003)

[141] Klein, S., Simmons, R.F.: A computational approach to grammatical coding of
english words. Journal of the ACM (JACM) 10(3), 334–347 (1963)

[142] Knackstedt, R., Kuropka, D., Müller, O., Polyvyanyy, A.: An ontology-based
service discovery approach for the provisioning of product-service bundles. In:
European Conference on Information Systems. pp. 1965–1977 (2008)

[143] Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N.,
Cowan, B., Shen, W., Moran, C., Zens, R., et al.: Moses: Open source toolkit for
statistical machine translation. In: Proceedings of the 45th annual meeting of the
ACL on interactive poster and demonstration sessions. pp. 177–180. Association
for Computational Linguistics (2007)

[144] Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: Ijcai. vol. 14, pp. 1137–1145 (1995)

[145] Kolb, P.: Disco: A multilingual database of distributionally similar words. Pro-
ceedings of KONVENS-2008, Berlin (2008)

156 BIBLIOGRAPHY

[146] Kolb, P.: Experiments on the difference between semantic similarity and relat-
edness. In: Proceedings of the ordic Conference on Computational Linguistics
(ODALIDA). pp. 81–88 (2009)

[147] Korherr, B., List, B.: Extending the EPC and the BPMN with business process
goals and performance measures. In: International Conference on Enterprise
Information Systems. pp. 287–294 (2007)

[148] Koschmider, A., Blanchard, E.: User assistance for business process model de-
composition. In: Proceedings of the 1st IEEE International Conference on Re-
search Challenges in Information Science. pp. 445–454 (2007)

[149] Kovacic, A.: Business renovation: business rules (still) the missing link. Busi-
ness process management journal 10(2), 158–170 (2004)

[150] Krauth, E., Moonen, H., Popova, V., Schut, M.C.: Performance measurement
and control in logistics service providing. In: International Conference on En-
terprise Information Systems. pp. 239–247 (2005)

[151] Kronz, A.: Managing of process key performance indicators as part of the
aris methodology. In: Corporate performance management, pp. 31–44. Springer
(2006)

[152] Krumnow, S., Decker, G.: A concept for spreadsheet-based process modeling.
In: International Workshop on Business Process Modeling Notation. pp. 63–77.
Springer (2010)

[153] Kumar, E.: Natural language processing. IK International Pvt Ltd (2011)
[154] Kupiec, J.: Robust part-of-speech tagging using a hidden markov model. Com-

puter Speech & Language 6(3), 225–242 (1992)
[155] Kuss, E., Leopold, H., Van der Aa, H., Stuckenschmidt, H., Reijers, H.A.: Prob-

abilistic evaluation of process model matching techniques. In: Conceptual Mod-
eling: 35th International Conference, ER 2016, Gifu, Japan, November 14-17,
2016, Proceedings 35. pp. 279–292. Springer (2016)

[156] Küster, J.M., Koehler, J., Ryndina, K.: Improving business process models with
reference models in business-driven development. In: International Conference
on Business Process Management. pp. 35–44. Springer (2006)

[157] La Rosa, M., Dumas, M., Uba, R., Dijkman, R.M.: Business process model
merging: An approach to business process consolidation. ACM Transactions on
Software Engineering and Methodology (TOSEM) 22(2), 11 (2013)

[158] Lami, G., Gnesi, S., Fabbrini, F., Fusani, M., Trentanni, G.: An automatic tool
for the analysis of natural language requirements. Tech. rep., Informe técnico,
CNR Information Science and Technology Institute, Pisa, Italia, Setiembre
(2004)

[159] Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic anal-
ysis. Discourse processes 25(2-3), 259–284 (1998)

[160] Lappin, S., Leass, H.J.: An algorithm for pronominal anaphora resolution. Com-
putational linguistics 20(4), 535–561 (1994)

[161] Lavoie, B., Rambow, O., Reiter, E.: The modelexplainer. In: Eighth Inter-
national Workshop on Natural Language Generation, Herstmonceux, Sussex
(1996)

[162] Leopold, H.: Natural language in business process models. Springer (2013)

BIBLIOGRAPHY 157

[163] Leopold, H., van der Aa, H., Pittke, F., Raffel, M., Mendling, J., Reijers, H.A.:
Integrating textual and model-based process descriptions for comprehensive pro-
cess search. In: International Conference on Enterprise, Business-Process and
Information Systems Modeling. pp. 51–65. Springer (2016)

[164] Leopold, H., Eid-Sabbagh, R.H., Mendling, J., Azevedo, L.G., Baião, F.A.:
Detection of naming convention violations in process models for different lan-
guages. Decision Support Systems 56, 310–325 (2013)

[165] Leopold, H., Meilicke, C., Fellmann, M., Pittke, F., Stuckenschmidt, H.,
Mendling, J.: Towards the automated annotation of process models. In: Interna-
tional Conference on Advanced Information Systems Engineering. pp. 401–416.
Springer (2015)

[166] Leopold, H., Mendling, J., Polyvyanyy, A.: Supporting process model validation
through natural language generation. IEEE Transactions on Software Engineer-
ing 40(8), 818–840 (2014)

[167] Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R.M., Stuck-
enschmidt, H.: Probabilistic optimization of semantic process model matching.
In: International Conference on Business Process Management. pp. 319–334.
Springer (2012)

[168] Leopold, H., Pittke, F., Mendling, J.: Automatic service derivation from busi-
ness process model repositories via semantic technology. Journal of Systems and
Software 108, 134–147 (2015)

[169] Lin, D.: An information-theoretic definition of similarity. In: ICML. vol. 98, pp.
296–304 (1998)

[170] Lin, D.: Dependency-based evaluation of minipar. In: Treebanks, pp. 317–329.
Springer (2003)

[171] Ling, J., Zhang, L., Feng, Q.: An improved structure-based approach to measure
similarity of business process models. In: SEKE. pp. 377–380 (2014)

[172] Liu, K., Yan, Z., Wang, Y., Wen, L., Wang, J.: Efficient syntactic process differ-
ence detection using flexible feature matching. In: Asia-Pacific Conference on
Business Process Management. pp. 103–116. Springer (2014)

[173] Lu, R., Sadiq, S., Governatori, G.: Compliance aware business process design.
In: International Conference on Business Process Management. pp. 120–131.
Springer (2007)

[174] Luftman, J., Papp, R., Brier, T.: Enablers and inhibitors of business-it alignment.
Communications of the AIS 1(3es), 1 (1999)

[175] Madhavan, J., Bernstein, P.A., Domingos, P., Halevy, A.Y.: Representing and
reasoning about mappings between domain models. AAAI/IAAI 2002, 80–86
(2002)

[176] Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid.
In: vldb. vol. 1, pp. 49–58 (2001)

[177] Maglitta, J.: Know-how, inc. Computerworld 30(1), 1996 (1996)
[178] Mannhardt, F., de Leoni, M., Reijers, H.A.: Extending process logs with events

from supplementary sources. In: 3rd Workshop on Data- & Artifact-centric
BPM. pp. 235–247. Springer (2014)

[179] Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval,
vol. 1. Cambridge university press Cambridge (2008)

158 BIBLIOGRAPHY

[180] Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.:
The Stanford CoreNLP natural language processing toolkit. In: Proceedings of
52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations. pp. 55–60 (2014)

[181] Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated
corpus of english: The penn treebank. Computational linguistics 19(2), 313–330
(1993)

[182] Marshall, B., Chen, H., Madhusudan, T.: Matching knowledge elements in
concept maps using a similarity flooding algorithm. Decision Support Systems
42(3), 1290–1306 (2006)

[183] Matsumoto, Y., Tanaka, H., Hirakawa, H., Miyoshi, H., Yasukawa, H.: Bup: a
bottom-up parser embedded in prolog. New Generation Computing 1(2), 145–
158 (1983)

[184] McCallum, A., Freitag, D., Pereira, F.C.: Maximum entropy markov models for
information extraction and segmentation. In: Icml. vol. 17, pp. 591–598 (2000)

[185] McCarthy, J.F., Lehnert, W.G.: Using decision trees for coreference resolution.
arXiv preprint cmp-lg/9505043 (1995)

[186] Mendling, J.: Metrics for process models: empirical foundations of verifica-
tion, error prediction, and guidelines for correctness, vol. 6. Springer Science &
Business Media (2008)

[187] Mendling, J., Reijers, H.A., Van der Aalst, W.M.P.: Seven process model-
ing guidelines (7pmg). Information and Software Technology 52(2), 127–136
(2010)

[188] Meziane, F., Athanasakis, N., Ananiadou, S.: Generating natural language spec-
ifications from UML class diagrams. Requirements Engineering 13(1), 1–18
(2008)

[189] Michelberger, B.: Process-oriented information logistics: aligning process in-
formation with business processes. Ph.D. thesis, Ulm University (2015)

[190] Michelberger, B., Mutschler, B., Reichert, M.: On handling process information:
Results from case studies and a survey. In: International Conference on Business
Process Management. pp. 333–344. Springer (2011)

[191] Michelberger, B., Mutschler, B., Reichert, M.: Towards process-oriented in-
formation logistics: why quality dimensions of process information matter. In:
EMISA. pp. 107–120. Koellen-Verlag (2011)

[192] Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based
measures of text semantic similarity. In: Proceedings of the 21st National Con-
ference on Artificial Intelligence. vol. 6, pp. 775–780 (2006)

[193] Miller, G.: The organization of lexical memory: Are word associations suffi-
cient. The pathology of memory pp. 223–237 (1969)

[194] Miller, G.A.: WordNet: a lexical database for english. Communications of the
ACM 38(11), 39–41 (1995)

[195] Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction
to wordnet: An on-line lexical database. International journal of lexicography
3(4), 235–244 (1990)

[196] Miller, S., Bobrow, R., Ingria, R., Schwartz, R.: Hidden understanding models
of natural language. In: Proceedings of the 32nd annual meeting on Associa-

BIBLIOGRAPHY 159

tion for Computational Linguistics. pp. 25–32. Association for Computational
Linguistics (1994)

[197] Mohri, M.: Finite-state transducers in language and speech processing. Compu-
tational linguistics 23(2), 269–311 (1997)

[198] Momm, C., Malec, R., Abeck, S.: Towards a model-driven development of mon-
itored processes. In: Wirtschaftsinformatik (2). pp. 319–336 (2007)

[199] Munoz-Gama, J., Carmona, J., Van der Aalst, W.M.P.: Single-entry single-exit
decomposed conformance checking. Information Systems 46, 102–122 (2014)

[200] Nadeau, D., Turney, P.D.: A supervised learning approach to acronym identi-
fication. In: Conference of the Canadian Society for Computational Studies of
Intelligence. pp. 319–329. Springer (2005)

[201] Nasukawa, T., Yi, J.: Sentiment analysis: Capturing favorability using natural
language processing. In: Proceedings of the 2nd international conference on
Knowledge capture. pp. 70–77. ACM (2003)

[202] Navarro, G.: A guided tour to approximate string matching. ACM computing
surveys (CSUR) 33(1), 31–88 (2001)

[203] Noy, N.F.: Semantic integration: a survey of ontology-based approaches. ACM
Sigmod Record 33(4), 65–70 (2004)

[204] Noy, N.F., Musen, M.A.: The prompt suite: interactive tools for ontology merg-
ing and mapping. International Journal of Human-Computer Studies 59(6), 983–
1024 (2003)

[205] Och, F.J.: Minimum error rate training in statistical machine translation. In:
Proceedings of the 41st Annual Meeting on Association for Computational
Linguistics-Volume 1. pp. 160–167. Association for Computational Linguistics
(2003)

[206] Parent, C., Spaccapietra, S.: Issues and approaches of database integration.
Communications of the ACM 41(5es), 166–178 (1998)

[207] Paulraj, D., Swamynathan, S., Madhaiyan, M.: Process model-based atomic ser-
vice discovery and composition of composite semantic web services using web
ontology language for services (owl-s). Enterprise Information Systems 6(4),
445–471 (2012)

[208] Pedrinaci et al., C.: Sentinel: a semantic business process monitoring tool. In:
International Workshop on Ontology-Supported Business Intelligence. pp. 26–
30 (2008)

[209] Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science
research methodology for information systems research. Journal of management
information systems 24(3), 45–77 (2007)

[210] Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In:
Proceedings of the 33rd international conference on Very large data bases. pp.
15–26 (2007)

[211] Peng, L., Diao, Y.: Supporting data uncertainty in array databases. In: ACM
SIGMOD International Conference on Management of Data. pp. 545–560. ACM
(2015)

[212] Phalp, K.T., Vincent, J., Cox, K.: Improving the quality of use case descrip-
tions: empirical assessment of writing guidelines. Software Quality Journal
15(4), 383–399 (2007)

160 BIBLIOGRAPHY

[213] Pittke, F., Leopold, H., Mendling, J.: When language meets language: Anti pat-
terns resulting from mixing natural and modeling language. In: Business Process
Management Workshops. pp. 118–129. Springer (2014)

[214] Pittke, F., Leopold, H., Mendling, J.: Automatic detection and resolution of lex-
ical ambiguity in process models. IEEE Transactions on Software Engineering
41(6), 526–544 (2015)

[215] Pittke, F., Leopold, H., Mendling, J., Tamm, G.: Enabling reuse of process mod-
els through the detection of similar process parts. In: International Conference
on Business Process Management. pp. 586–597. Springer (2012)

[216] Polyvyanyy, A., Armas-Cervantes, A., Dumas, M., Garcı́a-Bañuelos, L.: On the
expressive power of behavioral profiles. Formal Aspects of Computing 28(4),
597–613 (2016)

[217] Ponzetto, S.P., Strube, M.: Exploiting semantic role labeling, wordnet and
wikipedia for coreference resolution. In: Proceedings of the main conference
on Human Language Technology Conference of the North American Chapter
of the Association of Computational Linguistics. pp. 192–199. Association for
Computational Linguistics (2006)

[218] Popova, V., Sharpanskykh, A.: Modeling organizational performance indicators.
Information Systems 35(4), 505–527 (2010)

[219] Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
[220] Pradhan, S.S., Ramshaw, L., Weischedel, R., MacBride, J., Micciulla, L.: Un-

restricted coreference: Identifying entities and events in ontonotes. In: Interna-
tional Conference on Semantic Computing. pp. 446–453. IEEE (2007)

[221] Pritchard, J.P., Armistead, C.: Business process management–lessons from eu-
ropean business. Business Process Management Journal 5(1), 10–35 (1999)

[222] Quinlan, J.R.: Induction of decision trees. Machine learning 1(1), 81–106 (1986)
[223] Rabiner, L.R.: A tutorial on hidden markov models and selected applications in

speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)
[224] Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema match-

ing. the VLDB Journal 10(4), 334–350 (2001)
[225] Ramezani, E., Fahland, D., Van der Aalst, W.M.P.: Where did i misbehave?

diagnostic information in compliance checking. In: International conference on
business process management. pp. 262–278. Springer (2012)

[226] Rapp, R.: A freely available automatically generated thesaurus of related words.
In: LREC (2004)

[227] Razali, N.M., Wah, Y.B., et al.: Power comparisons of shapiro-wilk,
kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical
modeling and analytics 2(1), 21–33 (2011)

[228] Recker, J., Safrudin, N., Rosemann, M.: How novices design business processes.
Information Systems 37(6), 557–573 (2012)

[229] Reijers, H.A.: Design and control of workflow processes: business process man-
agement for the service industry. Springer-Verlag (2003)

[230] Reijers, H.A., Leopold, H., Recker, J.: Towards a science of checklists. In:
Proceedings of the 50th Hawaii International Conference on System Sciences
(2017)

BIBLIOGRAPHY 161

[231] Resnik, P., et al.: Semantic similarity in a taxonomy: An information-based
measure and its application to problems of ambiguity in natural language. J.
Artif. Intell. Res.(JAIR) 11, 95–130 (1999)

[232] Riefer, M., Ternis, S.F., Thaler, T.: Mining process models from natural
language text: A state-of-the-art analysis. In: Multikonferenz Wirtschaftsin-
formatik (MKWI-16), March 9-11, Illmenau, Germany. Universität Illmenau
(2016)

[233] del Rı́o-Ortega, A., Cabanillas, C., Resinas, M., Ruiz-Cortés, A.: Ppinot tool
suite: a performance management solution for process-oriented organisations.
In: Service-Oriented Computing, pp. 675–678. Springer (2013)

[234] del Rı́o-Ortega, A., Gutiérrez, A.M., Durán, A., Resinas, M., Ruiz-Cortés, A.:
Modelling service level agreements for business process outsourcing services.
In: International Conference on Advanced Information Systems Engineering.
pp. 485–500. Springer (2015)

[235] del Rio-Ortega, A., Resinas, M., Cabanillas, C., Ruiz-Cortes, A.: On the defi-
nition and design-time analysis of process performance indicators. Information
Systems 38(4), 470–490 (2013)

[236] del Rı́o-Ortega, A., Resinas, M., Durán, A., Ruiz-Cortés, A.: Using templates
and linguistic patterns to define process performance indicators. Enterprise In-
formation Systems 10(2), 159–192 (2016)

[237] Rosemann, M.: Potential Pitfalls of Process Modeling: Part A. Business Process
Management Journal 12(2), 249–254 (2006)

[238] Rowley, J.: The wisdom hierarchy: representations of the dikw hierarchy. Jour-
nal of information science 33(2), 163–180 (2007)

[239] Sadiq, S., Governatori, G., Namiri, K.: Modeling control objectives for business
process compliance. In: International conference on business process manage-
ment. pp. 149–164. Springer (2007)

[240] Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology.
IEEE Trans. Systems, Man, & Cybernetics (1991)

[241] Sagi, T., Gal, A.: Schema matching prediction with applications to data source
discovery and dynamic ensembling. The International Journal on Very Large
Data Bases 22(5), 689–710 (2013)

[242] Sagi, T., Gal, A., Weidlich, M.: Measuring expected integration effort in service
composition. In: Services Computing (SCC), 2014 IEEE International Confer-
ence on. pp. 645–652. IEEE (2014)

[243] Saldivar, J., Vairetti, C., Rodrı́guez, C., Daniel, F., Casati, F., Alarcón, R.: Anal-
ysis and improvement of business process models using spreadsheets. Informa-
tion Systems 57, 1 – 19 (2016)

[244] Salton, G., McGill, M.J.: Introduction to modern information retrieval.
McGraw-Hill, Inc. (1986)

[245] Sànchez-Ferreres, J., Carmona, J., Padró, L.: Aligning textual and graphical
descriptions of processes through ILP techniques. In: International Conference
on Advanced Information Systems Engineering (In press). Springer (2017)

[246] Sarma, A.D., Benjelloun, O., Halevy, A., Widom, J.: Working models for un-
certain data. In: 22nd International Conference on Data Engineering. pp. 7–7.
IEEE (2006)

162 BIBLIOGRAPHY

[247] Schäl, T.: Workflow management for process organisations, volume 1096 of.
Lecture Notes in Computer Science (1996)

[248] Schumacher, P., Minor, M., Schulte-Zurhausen, E.: Extracting and enriching
workflows from text. In: Information Reuse and Integration (IRI), 2013 IEEE
14th International Conference on. pp. 285–292. IEEE (2013)

[249] Sebu, M.L., Ciocârlie, H.: Similarity of business process models in a modular
design. In: Applied Computational Intelligence and Informatics (SACI), 2016
IEEE 11th International Symposium on. pp. 31–36. IEEE (2016)

[250] Selway, M., Grossmann, G., Mayer, W., Stumptner, M.: Formalising natural lan-
guage specifications using a cognitive linguistic/configuration based approach.
Information Systems 54, 191–208 (2015)

[251] Senderovich, A., Rogge-Solti, A., Gal, A., Mendling, J., Mandelbaum, A.: The
road from sensor data to process instances via interaction mining. In: Interna-
tional Conference on Advanced Information Systems Engineering. pp. 257–273.
Springer (2016)

[252] Simon, H.A.: The sciences of the artificial. MIT press (1996)
[253] Sinha, A., Paradkar, A.: Use cases to process specifications in Business Process

Modeling Notation. In: IEEE International Conference on Web Services. pp.
473–480 (2010)

[254] Sinur, J., Schulte, W., Hill, J., Jones, T.: Magic quadrant for intelligent business
process management suites. Gartner RAS Core Research Note G 224913, 27
(2012)

[255] Smirnov, S., Weidlich, M., Mendling, J.: Business process model abstrac-
tion based on behavioral profiles. In: Service-Oriented Computing, pp. 1–16.
Springer (2010)

[256] Smith, H., Fingar, P.: Business process management: the third wave, vol. 1.
Meghan-Kiffer Press Tampa (2003)

[257] Soon, W.M., Ng, H.T., Lim, D.C.Y.: A machine learning approach to coref-
erence resolution of noun phrases. Computational linguistics 27(4), 521–544
(2001)

[258] Stachowiak, H.: Allgemeine modelltheorie. {Springer-Verlag, Wien} (1973)
[259] Steiger, D.M.: Enhancing user understanding in a decision support system: a

theoretical basis and framework. Journal of Management Information Systems
15(2), 199–220 (1998)

[260] Temperley, D., Sleator, D., Lafferty, J.: Parsing english with a link grammar. In:
Third International Workshop on Parsing Technologies (1993)

[261] Tsichritzis, D.: The dynamics of innovation. In: Beyond calculation, pp. 259–
265. Springer (1997)

[262] Tur, G., Hakkani-Tür, D., Heck, L.: What is left to be understood in atis? In:
Spoken Language Technology Workshop (SLT), 2010 IEEE. pp. 19–24. IEEE
(2010)

[263] Unger, M., Leopold, H., Mendling, J.: How much flexibility is good for knowl-
edge intensive business processes: A study of the effects of informal work prac-
tices. In: System Sciences (HICSS), 2015 48th Hawaii International Conference
on. pp. 4990–4999. IEEE (2015)

BIBLIOGRAPHY 163

[264] Uschold, M., Gruninger, M.: Ontologies and semantics for seamless connectiv-
ity. ACM SIGMod Record 33(4), 58–64 (2004)

[265] Vaidyanathan, G.: A framework for evaluating third-party logistics. Communi-
cations of the ACM 48(1), 89–94 (2005)

[266] Van Glabbeek, R., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Informatica 37(4-5), 229–327 (2001)

[267] Vance, D.: Information, knowledge and wisdom: The epistemic hierarchy and
computer-based information systems. AMCIS 1997 Proceedings p. 124 (1997)

[268] Versley, Y.: Antecedent selection techniques for high-recall coreference resolu-
tion. In: EMNLP-CoNLL. pp. 496–505 (2007)

[269] Vessey, I., Glass, R.: Strong vs. weak approaches to systems development. Com-
munications of the ACM 41(4), 99–102 (1998)

[270] Viorica Epure, E., Martin-Rodilla, P., Hug, C., Deneckere, R., Salinesi, C.:
Automatic process model discovery from textual methodologies. In: Research
Challenges in Information Science (RCIS), 2015 IEEE 9th International Confer-
ence on. pp. 19–30. IEEE (2015)

[271] Van der Vos, B., Gulla, J.A., van de Riet, R.: Verification of conceptual models
based on linguistic knowledge. Data & Knowledge Engineering 21(2), 147 –
163 (1997)

[272] Wald, J.A., Sorenson, P.G.: Explaining ambiguity in a formal query language.
ACM Transactions on Database Systems (TODS) 15(2), 125–161 (1990)

[273] Wang, J., Wen, J.R., Lochovsky, F., Ma, W.Y.: Instance-based schema matching
for web databases by domain-specific query probing. In: Proceedings of the
Thirtieth international conference on Very large data bases-Volume 30. pp. 408–
419. VLDB Endowment (2004)

[274] Wang, Y.Y., Acero, A.: Combination of cfg and n-gram modeling in semantic
grammar learning. In: INTERSPEECH (2003)

[275] Wang, Y.Y., Deng, L., Acero, A.: Spoken language understanding. Signal Pro-
cessing Magazine, IEEE 22(5), 16–31 (2005)

[276] Wang, Y.Y., Waibel, A.: Decoding algorithm in statistical machine translation.
In: Proceedings of the 35th Annual Meeting of the Association for Computa-
tional Linguistics and Eighth Conference of the European Chapter of the Asso-
ciation for Computational Linguistics. pp. 366–372 (1997)

[277] Weidlich, M., Dijkman, R.M., Mendling, J.: The ICoP framework: Identifica-
tion of correspondences between process models. In: International Conference
on Advanced Information Systems Engineering. pp. 483–498. Springer (2010)

[278] Weidlich, M., Mendling, J.: Perceived consistency between process models. In-
formation Systems 37(2), 80–98 (2012)

[279] Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement
based on behavioral profiles of process models. IEEE Transactions on Software
Engineering 37(3), 410–429 (2011)

[280] Weidlich, M., Mendling, J., Weske, M.: Propagating changes between aligned
process models. Journal of Systems and Software 85(8), 1885–1898 (2012)

[281] Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J.: Process compliance
measurement based on behavioural profiles. In: International Conference on Ad-
vanced Information Systems Engineering. pp. 499–514. Springer (2010)

164 BIBLIOGRAPHY

[282] Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process
compliance analysis based on behavioural profiles. Information Systems 36(7),
1009–1025 (2011)

[283] Weidlich, M., Sagi, T., Leopold, H., Gal, A., Mendling, J.: Predicting the quality
of process model matching. In: International Conference on Business Process
Management, pp. 203–210. Springer (2013)

[284] Weidlich, M., Sheetrit, E., Branco, M.C., Gal, A.: Matching business process
models using positional passage-based language models. In: International Con-
ference on Conceptual Modeling. pp. 130–137. Springer (2013)

[285] Weidlich, M., Weske, M., Mendling, J.: Change propagation in process mod-
els using behavioural profiles. In: Services Computing, 2009. SCC’09. IEEE
International Conference on. pp. 33–40. IEEE (2009)

[286] Wetzstein, B., Ma, Z., Leymann, F.: Towards measuring key performance in-
dicators of semantic business processes. In: Business Information Systems. pp.
227–238. Springer (2008)

[287] Wolter, C., Meinel, C.: An approach to capture authorisation requirements in
business processes. Requirements engineering 15(4), 359–373 (2010)

[288] Woods, W.A.: Semantics and quantification in natural language question an-
swering. Advances in computers 17, 1–87 (1978)

[289] Xia, F., Palmer, M.: Converting dependency structures to phrase structures. In:
Proceedings of the first international conference on Human language technology
research. pp. 1–5. Association for Computational Linguistics (2001)

[290] Yu, H., Hatzivassiloglou, V.: Towards answering opinion questions: Separat-
ing facts from opinions and identifying the polarity of opinion sentences. In:
Proceedings of the 2003 conference on Empirical methods in natural language
processing. pp. 129–136. Association for Computational Linguistics (2003)

[291] Yujian, L., Bo, L.: A normalized levenshtein distance metric. IEEE transactions
on pattern analysis and machine intelligence 29(6), 1091–1095 (2007)

[292] Zaiß, K., Schlüter, T., Conrad, S.: Instance-based ontology matching using regu-
lar expressions. In: OTM Confederated International Conferences” On the Move
to Meaningful Internet Systems”. pp. 40–41. Springer (2008)

[293] Zhang, W., Sim, Y.C., Su, J., Tan, C.L.: Entity linking with effective acronym
expansion, instance selection, and topic modeling. In: IJCAI. vol. 2011, pp.
1909–1914 (2011)

[294] Zmud, R.W.: Remarks from MIS Quarterly editor. MIS Quarterly 21(2), 261–
290 (1997)

	Cover
	Colofon
	Title Page
	Abstract
	Samenvatting
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Contributions
	Methodological Background
	Publications
	Thesis Outline

	Background
	Process Information in Organizations
	Core Definitions
	Natural Language Processing
	Matching

	Comparing Process Models to Textual Process Descriptions
	Problem Illustration
	Inconsistency-Detection Approach
	Evaluation
	Limitations
	Related Work
	Summary

	Conformance Checking based on Uncertain Event-Activity Mappings
	Problem Illustration
	Conformance-Checking Technique
	Evaluation
	Limitations
	Related Work
	Summary

	Dealing with Ambiguity in Textual Process Descriptions
	Problem Illustration
	Capturing Ambiguity Using Behavioral Spaces
	Conformance Checking using Behavioral Spaces
	Pruning Behavioral Spaces based on Information Gain
	Evaluation
	Limitations
	Related Work
	Summary

	Transforming and Aligning Process Performance Indicators
	Problem Illustration
	Template-Based PPI Definitions
	Transformation Approach
	Evaluation
	Limitations
	Related Work
	Summary

	Process Model Matching using Event-Log Information
	Problem Illustration
	Event Log-Based Matching
	Evaluation
	Limitations
	Related Work
	Summary

	Conclusion
	Summary of Results
	Implications
	Future Research

	Bibliography

