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Abstract

Concept drift in process mining occurs when a single event log includes data
from multiple versions of a process, making the detection of such drifts essen-
tial for ensuring reliable process mining results. Although many techniques have
been proposed, they exhibit limitations in accuracy and scope. Specifically, their
accuracy diminishes when facing noise, varying drift types, or different levels
of change severity. Additionally, these techniques primarily focus on detecting
sudden and gradual drifts, overlooking the automated detection of incremental
and recurring drifts. To address these limitations, we present CV4CDD-4D, a novel
approach for automated concept drift detection that can identify sudden, grad-
ual, incremental, and recurring drifts. Our approach follows an entirely different
paradigm. Specifically, it employs a supervised machine learning model fine-tuned
on a large collection of event logs with known concept drifts, enabling the model
to learn how drifts manifest in event logs. The possibility to train such a model
has recently emerged through a tool that generates event logs with known concept
drifts. However, applying supervised machine learning remains challenging due
to the complexities of encoding. To address this, we propose converting an event
log into an image-based representation that captures process evolution over time,
enabling the use of a state-of-the-art computer vision model to detect drifts. Our
experiments show that our approach, compared to existing solutions, improves
the accuracy and robustness to noise of drift detection while extending coverage
to a broader range of drift types, highlighting the potential of this new paradigm.

Keywords: Process mining, Concept drift detection, Machine learning, Deep learning,
Computer vision, Object detection.
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1 Introduction

Organizations execute various business processes to achieve their business objectives.
These business processes are often supported by information systems that record data
generated during the execution of process instances. Event logs represent snapshots of
such recorded data over a specific period of time, forming the basis for process mining,
a collection of techniques that examine how business processes are truly executed [1].
However, due to the dynamic nature of business environments, processes under analysis
are often not in a steady state but are rather subject to changes [6]. These changes can
result in the presence of concept drifts in event logs, i.e., situations in which an event
log contains data from multiple versions of the same process. Concept drift detection
aims to identify these different versions in order to prevent the contamination of
process mining results that can occur from mixing them. [6].

The importance of concept drift detection in process mining has been widely
acknowledged [54], resulting in a range of proposed concept drift detection tech-
niques [47]. However, these existing techniques exhibit notable limitations concerning
their accuracy and scope. With respect to their accuracy, the performance of existing
techniques tends to significantly decline in situations where noise, varying types of
drifts, or different levels of change severity are present in an event log. Such declines
occur because the techniques depend on algorithmic design choices, often based on
heuristic strategies and assumptions about how drifts manifest in event logs. Since,
these assumptions are not applicable to all situations, algorithms based on them can
be subject to issues such as a lack of robustness to noise or generally poor accuracy.
With respect to their scope, existing techniques typically detect only a subset of the
commonly-known drift types, typically just focusing on sudden drifts, with few tech-
niques also considering gradual ones [13]. The detection of more complex drifts, such
as incremental and recurring drifts [6], is generally overlooked and has not yet been
tackled in an automated manner. Due to these limitations, existing concept drift detec-
tion techniques are thus unable to provide a precise and comprehensive understanding
of how processes evolve over time.

To overcome this, we propose CV4CDD-4D, a concept drift detection approach that
can detect sudden, gradual, incremental, and recurring drifts in an automated manner,
with high accuracy. We achieve this by following an entirely different paradigm for drift
detection in process mining. Specifically, unlike existing techniques, our approach uses
a machine learning model trained on a large dataset of labeled event logs, enabling it
to learn how drifts of different types manifest themselves in event logs. The possibility
of training such a model has only recently emerged, thanks to a tool for generating
large collections of logs with known concept drifts [15]. However, even with such data,
the challenge of applying (supervised) machine learning to concept drift detection is
far from straightforward. This difficulty stems from the challenge of capturing the pro-
gression of an entire process over time, in a way that it can serve as suitable for input
into a machine learning model. To address this challenge, we draw inspiration from
research that uses image-based representations to encode multi-faceted data about
processes [42, 43]. Therefore, we first turn an event log into an image that visualizes
differences in process behavior over time. This enables us to employ a state-of-the-art
object detection model [28] (from the field of computer vision), fine-tuned on a large
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collection of event logs with known concept drifts, to recognize where drifts occur in
unseen event logs. Our experiments reveal the efficacy of this idea, showing that our
approach significantly improves the state of the art in terms of accuracy, robustness
to noise, and automation in detecting drifts, while covering a broader range of drift
types.

This paper presents an extended and revised version of our earlier work [23] in
which we introduced the first version of our computer vision-based approach for con-
cept drift detection in process mining. The current paper extends our earlier work in
two main directions. First, we broadened the scope of our approach by including the
detection of complex drift types, i.e., incremental and recurring drifts, in addition to
the sudden and gradual drifts already covered by the original version. Second, we con-
siderably extended the evaluation of our approach with additional experiments, which
allowed us to investigate the performance of our approach in more depth. Specifi-
cally, beyond extending the existing experiments to the broader scope of our extended
approach, we included a sensitivity analysis in which we investigate the impact of the
user parameters on our approach’s performance, and performed a qualitative analysis
and benchmark comparison on various real-world event logs.

In the remainder, we define the scope of the work in Section 2. Our CV4CDD-4D

approach, including the input to the problem and desired output, is detailed
in Section 4. Section 5 presents the evaluation of our approach against state-of-the-art
techniques. Finally, Section 3 reflects on related work before Section 6 concludes the
paper.

2 Problem Scope

Our work addresses the problem of detecting concept drifts in the control-flow perspec-
tive of a process based on data recorded in an event log. Conventionally, such concept
drifts encompass four types: sudden, gradual, incremental, and recurring drifts [6], as
illustrated in Figure 1. We pose that these four types can be sub-divided into two
groups:
Simple drifts. We jointly refer to sudden and gradual drifts as simple drifts, since
they correspond to a single change in a process from one version to another:

• Sudden drift: A sudden drift describes an abrupt replacement of one process
version by another. For instance, Figure 1 shows the replacement of process ver-
sion v1 by version v2 at a certain moment, i.e., the change point p1. This means
that all process instances that start after p1 will follow process version v2. Sud-
den drifts are often observed in scenarios such as emergency response planning,
where airlines and airports may alter their security procedures in response to new
regulations [6].

• Gradual drift: A gradual drift describes a situation where the replacement of pro-
cess version v1 by v2 involves a transition period in which both versions coexist.
In these cases, after an initial change point p1 an increasing fraction of new pro-
cess instances will follow version v2, until the roll-out of that version is completed
at change point p2. Gradual drifts, for instance, will occur when an organiza-
tion starts training its employees in a spread-out manner regarding a new way of
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Fig. 1: Problem scope: detection of sudden, gradual, incremental, and recurring drifts.

working, so that more and more employees start following the new version during
the training period.

Complex drifts. We jointly refer to incremental and gradual drifts as complex drifts,
since they consist of several, related simple drifts:

• Incremental drift: An incremental drift occurs when one process version is
replaced by another through a sequence of simple drifts, rather than at once. For
instance, in Figure 1, process version v1.0 is replaced by v2.0 through a sequence of
sudden and gradual drifts. This results in two intermediate versions, v1.1 and v1.2,
along with a total of four change points. Generally, the simple drifts that make
up an incremental drift must relate to the same transformation initiative and
are characterized by relatively low change severity, which measures the extent to
which process behavior is impacted by a change. A notable example of this type
of drift are the process changes that arise from agile business process management
methodologies [6].

• Recurring drift: A recurring drift is characterized by a situation when different
versions of a process reoccur in an alternating fashion. For instance, Figure 1
illustrates a situation where a process switches between versions v1 and v2, fol-
lowing a sequence of sudden and gradual drifts. Recurring drifts are, for instance,
common in processes with seasonal patterns.

In the following section, we consider the relevant literature within the scope of the
discussed problem.

3 Related Work

Since establishing the problem and importance of concept drift detection in process
mining more than a decade ago [54], various techniques have been proposed to address
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this problem, as highlighted in recent literature reviews [13,47]. We first discuss exist-
ing techniques for offline concept drift detection, since these tackle the same or a subset
of the task that our work addresses. Afterwards, we also consider works that focus on
others types of concept drift detection, such as in online or multi-perspective settings.

Table 1: Classification of different concept drift detection techniques.

Technique
Change point

detection
Drift type detection

Sudden Gradual Incr. Rec.

Various works ✷

Bose et al. [6] ✷ (✷) (✷)
Martjushev et al. [35] ✷ (✷) (✷)
Maaradji et al. [33] ✷ ✷ ✷

Yeshchenko at el. [58] ✷ ✷ (✷) (✷) (✷)
Our approach (CV4CDD-4D) ✷ ✷ ✷ ✷ ✷

Legend: “✷” - automated, “(✷)” - semi-automated.

Offline concept drift detection. Table 1 provides an overview of existing concept
drift detection techniques, including their scope and automation level.

Change point detection. The majority of existing techniques (first row) just focus on
detecting change points in an event log since this is a required first step in concept drift
detection [2,7,14,19,21,25,30–32,34,36–38,38,46,48,55–57,60]. They use a wide range
of ways to tackle this task, including statistical testing, various kinds of feature rep-
resentations, windowing strategies, change and trend detection, and clustering. Many
of the techniques achieve good results, as demonstrated in a recent evaluation frame-
work [3]. However, our evaluation experiments show that our proposed CV4CDD-4D

approach outperforms them in terms of accuracy and robustness to noise when detect-
ing change points. Furthermore, these techniques do not go beyond the detection of
change points, meaning that they are only able to recognize when a process’s behavior
significantly changed, but they do not provide insights into what type of drift actually
occurred.1 As a result, they do not provide information about how the process evolved
over time.

Drift type detection. A few techniques [6, 33,35,58] go beyond change point detection
and are also able to detect drifts and their types (though often limited in scope and
automation).

Bose et al. [6] introduced concept drift detection in process mining, presenting a
method for automatically detecting sudden and gradual drifts using statistical testing
of feature vectors. Although this approach is pioneering, it has limitations in auto-
mated drift detection. Users must specify the type of drift in advance and manually
select features, relying on prior knowledge of drift characteristics. Otherwise, they
may face the computational burden of testing all feature combinations. Additionally,

1Recent techniques [36,37] demonstrate potential for detecting all four drift types. However, their current
implementations are limited to change point detection, with plans to extend their capabilities to other drift
types in future versions.
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users must specify a window size for drift detection, potentially missing some drift
occurrences.

To address the window size limitation, Martushev et al. [35] enhanced this method
by introducing adaptive windowing, which automatically adjusts the window size when
searching for drifts. However, this approach still requires users to define minimum and
maximum window size parameters as boundaries for automated window adaptation.
Moreover, users must define the type of drift beforehand. Therefore, both techniques
remain limited to detecting only sudden and gradual drifts, neglecting recurring and
incremental drifts.

The work by Maaradji et al. [33] introduced an alternative technique (ProDrift)
for detecting sudden and gradual drifts, addressing the main limitation of previous
solutions [6,35] and representing the current state of the art in simple drift detection.
Their approach involves a two-step process: first, it detects change points to identify
sudden drifts and then it employs post-processing on the output of the first step
to detect gradual drifts. Specifically, they analyze the behavior within the intervals
between two change points by statistically assessing whether it exhibits a mixture of
behavior distributions before and after these points. However, this distribution-based
method has a significant drawback: in situations where noise is present in an event log,
their approach experiences a notable decrease in detection accuracy, as demonstrated
in our evaluation (Section 5.1).

The Visual Drift Detection (VDD) technique, introduced by Yeshchenko et al. [58],
is a stand-alone solution for detecting four types of concept drifts in event logs. This
technique leverages concepts such as temporal logic, Declare constraints [11], and
time series analysis to group similar declarative behavioral constraints and automat-
ically identify change points. To identify different types of drifts, it provides visual
aids, including Drift Maps, Drift Charts, and directly-follows graphs. However, the
identification of gradual, recurring, and incremental drifts remains a manual process
that relies on user interpretation. As a result, recognizing drift and their types within
the same event log can be challenging and subjective. Our approach overcomes this
problem by detecting all four types of drifts in an automated manner.

Overall, it is evident that the comprehensive offline detection and characterization
of drifts and their types in event logs have not been adequately addressed.

Other concept drift detection techniques. A variety of existing techniques
for detecting concept drift address other aspects of the problem. For instance,
some approaches simultaneously consider multiple process perspectives, such as time,
resource involvement, and data, when identifying concept drifts [8, 22, 44, 45]. Other
techniques not only aim to detect concept drifts but also provide explanations for
these changes [4,16]. Various works focus on detecting concept drifts in event streams
(online settings), which allows for real-time detection. These techniques can detect
change points [18, 41] and offer detailed drift localization [39, 40] while dealing with
challenges such as computational overhead, real-time processing requirements, and
the need for continuous monitoring. Some online drift detection techniques specifi-
cally target drift type detection [5, 17, 20, 45, 51, 53], while also considering different
process perspectives [52]. Finally, certain techniques operate on trace streams rather

6



than event streams. These techniques can identify change points [9, 24, 46, 50, 55, 59]
and detect drift types [29].

In the following section, we present our approach, which overcomes existing limi-
tations and advances the state of the art by offering a reliable and automated method
for identifying all four types of drifts in event logs. Our method leverages an inno-
vative machine learning paradigm to learn how drifts manifest in event logs, moving
beyond traditional hand-crafted, unsupervised techniques.

4 Approach

This section introduces CV4CDD-4D, our computer vision approach for concept drift
detection. As visualized in Figure 2, our approach consists of two main steps. First,
we transform an event log into an image that captures the behavioral (dis)similarity
of a process over time. Then, the image is passed to our fine-tuned computer vision
model, which identifies if drifts are present in an event log and, if so, determines their
type (sudden, gradual, incremental, recurring) and corresponding change points.

Event 

log
1. Transformation

Concept 

drifts

2. Drift detection

Computer vision modelImage-based

representation

Fig. 2: Our CV4CDD-4D approach: overview of the main steps.

Before describing the two steps of our approach in detail, we define the approach’s
input and desired outcome.
Input. Our approach takes as input an event log L, which we define as a collection
of events e recorded by an information system during process execution. Each event
e ∈ L needs to at least have a case ID, an activity, and a timestamp. We use σ to
represent a trace, a sequence of events from L with the same case ID, ordered by
their timestamps. Finally, we denote ΣL as the ordered collection of traces, arranged
according to the timestamp of their first event.
Output. Given an event log L as input, the desired output is a collection of driftsD :=
{d1, · · · , dn}, where each drift di is represented by a tuple, di := (type, pstart, pend),
with di.type specifying the drift type, and di.pstart and di.pend denoting the drift’s
start and end change points, respectively. In case of a sudden drift, the start and end
points are the same. For a complex drift, which consists of a sequence of sudden and
gradual drifts, the start and end change points are defined by the start change point of
the first drift and the end change point of the last drift in the sequence, respectively.
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4.1 Transformation of Event Log into Image

The first approach step takes as input an event log and transforms it into an image. The
image visualizes the behavioral (dis)similarity of a process over time recorded, which
can be used to recognize concept drifts. The transformation includes four sub-steps,
as depicted in Figure 3.

Split traces 
into windows

Calculate behavioral 
representation

Measure 
similarity

Transform 
into image

Event 

log

Fig. 3: First approach step: transforming an event log into an image.

Split traces into windows. The approach first splits the chronologically ordered
traces in ΣL into an ordered collection of N windows, W := ⟨w1, . . . , wN ⟩. These
windows are non-overlapping and collectively cover all recorded traces in ΣL, with
each window wi containing approximately |ΣL|/N traces.

During the fine-tuning of the computer vision model, we use N = 200 as a default
value for the number of windows. For the training collection (see Table 2), we tested
various options and selected 200 because it, on average, provides an effective image-
based representation for event logs in the context of concept drift detection. This choice
was motivated by the need for a window size that strikes a balance: it should not be
too large (which could conceal gradual drifts within a single window, making them
undetectable) or too small (which might capture too few process traces to adequately
represent process behavior). The selection is primarily influenced by the configura-
tions for the length of generated drift and drift-free periods (and their more complex
patterns) used to generate event logs for our training collection. Therefore, using a
different configuration or data generation tool would likely require re-evaluating the
choice of this parameter.

We recommend using 200 windows also as the default setting for detecting con-
cept drifts using CV4CDD-4D on a new event log. However, for small event logs (e.g.,
with fewer than 2,000 traces), decreasing the number of windows avoids having too
few traces per window, as demonstrated in our sensitivity analysis in Experiment 1
(see Section 5.1). Conversely, larger event logs (especially those spanning a long time
range) may benefit from having more windows, to prevent drifts occurring within the
span of a single window.
Calculate behavioral representation. After establishing W , our approach com-
putes a behavioral representation, B(wi) for each window wi, which characterizes the
process behavior of wi’s traces. Each B(wi) consists of a collection of two-dimensional
tuples, each storing a behavioral pattern and its frequency, as visualized in Figure 4.

A common behavioral representation used in process mining is to capture the
directly-follows frequencies observed during a time window [13], which we use as the
default for our approach. It counts how often an activity was observed to directly
succeed another one in all the traces of a given window. However, it is important to
note that the choice for a behavioral representation is flexible, provided that it yields a
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numeric frequency distribution over a predefined set of relations or patterns across the
window. Therefore, CV4CDD-4D can also cover other types of relations (e.g., eventually
follows), sets of relation types, such as those of a behavioral profile [49], or declarative
constraints [12]. However, this would require retraining the computer vision model to
learn drift patterns in the new behavior representation (see Section 4.2).

Windows Traces
Behavioral

representation
Similarity
measure

wi
〈a,b,c〉2
〈a,c〉 B(wi) =


a → b : 2
b → c : 2
a → c : 1
c → d : 0

 S[i, j] = sim(B(wi), B(wj))

= cosine(


2
2
1
0

 ,


1
1
1
1

)
= 0.83

wj
〈a,b,c〉
〈a,c,d〉 B(wj) =


a → b : 1
b → c : 1
a → c : 1
c → d : 1


Fig. 4: Illustration of the similarity calculation between two windows.

Measure similarity. Next, our approach compares the behavioral representations
obtained for the different windows, quantifying their similarity. This comparison is
done for each pair wi and wj from W , resulting in a symmetric similarity matrix
denoted as S. Each entry S[i, j] in this matrix shows the similarity between the
behavior represented by B(wi) and B(wj).

The similarity matrix S can be established using various similarity measures. In
our approach, we use cosine similarity as the default measure because it effectively
detects newly introduced or removed behavior relations and is well-suited for assess-
ing changes in the frequencies. In theory, other commonly used similarity measures,
such as Earth Mover’s Distance [7], could also be applied. However, this would again
require retraining the computer vision model. Figure 4 illustrates the calculation of
the similarity measure between two windows, using a behavioral representation based
on directly-follows frequencies and the cosine similarity measure.
Transform into image. Finally, to enable image-based concept drift detection, the
similarity matrix S is transformed into an image. For this transformation, our approach
normalizes the matrix values to a range between 0 and 1, where the maximum sim-
ilarity corresponds to 1 and the minimum similarity is 0. Each normalized value is
then scaled by 255 and converted to integers, resulting in a range between 0 and 255.
Finally, using the Python Imaging Library2 and a color map, images are generated
from the normalized values.

Figure 5 depicts a few examples of the outcome of this step, covering different drift
scenarios. Note that the annotation that is shown is covered in Section 4.2.

2Available online: https://python-pillow.org
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Fig. 5: Output of the first approach step (incl. annotations).

4.2 Drift Detection

The second step of CV4CDD-4D takes as input the image obtained from the previous
step and applies a fine-tuned object detection model to detect concept drifts. In this
section, we present an overview of the object detection task and employed object
detection model, elaborate on the training data and its annotation, and clarify the
training configurations.
Object detection using RetinaNet. Object detection is a fundamental task in
computer vision, where the goal is to identify and locate objects within images. Deep
learning methods have significantly advanced this field by directly learning features
from data, leading to breakthroughs in object detection [28]. RetinaNet [26] is a recent
addition to deep learning-based object detection models. Known for its effectiveness
and reliability, RetinaNet has become widely adopted in both research and practical
applications, setting new standards in object detection performance.
RetinaNet Architecture. The RetinaNet model consists of three main compo-
nents [26]:

• Backbone Network: The backbone network identifies patterns necessary for object
detection. RetinaNet uses ResNet, a deep convolutional neural network, which
improves learning efficiency by allowing inputs to bypass certain layers.

• Feature Pyramid Network (FPN): The FPN processes multi-scale feature maps
from the backbone to create a pyramid of features at different resolutions. It
enhances the model’s ability to detect objects of varying sizes by combining high-
resolution feature maps from earlier layers with lower-resolution feature maps
from deeper layers.

• Classification and Bounding Box Subnetworks: These subnetworks enable accu-
rate object detection. The classification subnet predicts the probability of an
object belonging to a particular class at each location on the feature map, oper-
ating at multiple levels of the FPN. The box regression subnet predicts the
coordinates of bounding boxes for objects and refines their positions.

Additionally, RetinaNet uses a specialized loss function, Focal Loss, to address class
imbalance by down-weighting easily classified background examples and focusing on
difficult-to-detect objects. This makes RetinaNet effective in detecting concept drift
and handling noise across various sections of an image.
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Training data and annotation. We use a training set of event logs with known
concept drifts. Each event log in the training set is transformed into an image using
the first step of our CV4CDD-4D approach (Section 4.1). Then, each image is annotated
based on the drift information stored in the gold standard, capturing where different
drifts occur and what their types are. For the annotation, we define bounding boxes
using the widely-employed COCO (Common Objects in Context) format [27].

In our case, we use these bounding boxes to capture where drifts of certain types
occurred in the image, as shown for various scenarios in Figure 5. To annotate sudden
drifts, characterized by a single change point p that belongs to a window wi, we estab-
lish a bounding box around wi that spans in total 2 windows in both directions from
wi, resulting in a total length of 5 windows. For gradual drifts, we create annotations
using windows that correspond to the start and end change points. Each change point
pstart and pend is associated with a trace index, which belongs to a particular window
in W . The corresponding windows wi and wj , allow us to link pstart and pend to their
window indices i and j. We use these indices to define a bounding box for gradual
drift within an image.
Training configurations. To operationalize CV4CDD-4D, we specifically use the Reti-
naNet model from the TensorFlow Model Garden3, based on the SpineNet backbone
(ID 143). The model is pre-trained on the COCO dataset4, a widely-used dataset for
object detection. To adapt it to our specific task, we fine-tune the model on a training
set and halt fine-tuning using a validation set to prevent overfitting.
Image input, batch size, anchor boxes. We use a fixed input size of 256×256 for fine-
tuning the model5 with a batch size of 128 images, taking 312 iterations per epoch. The
model undergoes 500 epochs of training, with augmented images to increase diversity
and robustness by scaling up to two times or down to one-tenth of their original size.
We employ anchor boxes with a 1:1 aspect ratio, concentrating exclusively on square-
shaped bounding boxes, since all annotations correspond to squares of different sizes
along the diagonal of the image.
Optimization and learning rate. We use stochastic gradient descent with a momentum
of 0.9 and clip norm of 10, known for its simplicity and efficiency in training deep
learning models, especially with large datasets. Momentum aids convergence by lever-
aging past gradients, while gradient clipping prevents exploding gradients, ensuring
stability, particularly in complex neural networks. Additionally, we employ a cosine
learning rate, widely adopted for its simplicity and ability to enhance convergence and
generalization. This schedule adjusts the learning rate throughout training, following
a cosine-shaped function.
Confidence level. For each detected drift, the model assigns a confidence level between
0 and 1, reflecting its certainty in identifying and classifying the drift in the image. A
score closer to 0 indicates that no drift is present, while a score closer to 1 means the
model is confident that a drift of a certain type is present and correctly classified. We
set a threshold of 50% for the detection confidence level, meaning that if the model
detects a drift type with confidence above 50%, we consider the drift as detected.

3TensorFlow Model Garden, Available online: https://github.com/tensorflow/models
4COCO dataset, Available online: https://cocodataset.org/
5If an input image provided for inference has a different pixel size, i.e., because it was established using

a different number of windows N , RetinaNet automatically rescales the image to the default size.
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Using the fine-tuned RetinaNet model, our CD4CDD-4D approach can be directly
applied to detect concept drifts in unseen event logs.

5 Evaluation

This section presents three experiments conducted to comprehensively evaluate the
performance of our CV4CDD-4D approach for concept drift detection from multiple
perspectives. In Experiment 1, we assess the accuracy of our approach in detecting
change points in event logs and compare our results to various baseline techniques
that address this critical task for concept drift detection. Next, in Experiment 2, we
evaluate the accuracy of our approach in detecting drifts and their types and highlight
its advantages over a comparable state-of-the-art technique. Finally, in Experiment 3,
we apply our approach to real-life event logs and compare the insights obtained with
findings from the state-of-the-art technique.

To ensure reproducibility, the data collection, implementation, configurations, and
raw results are accessible in our public repository6.

5.1 Experiment 1: Change Point Detection

In this section, we assess the ability of our approach to detect change points in event
logs in comparison to existing baselines using synthetic data. We consider this problem
in isolation from the detection of drifts, given its fundamental role in concept drift
detection, as also evidenced by the various techniques that have been proposed to
address it. In the following, we discuss the evaluation setup, obtained results, and
findings from a sensitivity analysis.

5.1.1 Evaluation Setup

Below we elaborate on the details of the data collection, baselines, evaluation measures,
as well as configurations used to evaluate our approach.
Data collection. Our data collection comprises two datasets, summarized in Table 2.
CDLG dataset. To train, validate, and test our drift detection approach, we require
a large collection of event logs that contain known (i.e., gold-standard) concept drifts
of sudden, gradual, incremental, and recurring types. Since such a collection is not
publicly available, we, therefore, generated synthetic datasets using CDLG (Concept
Drift Log Generator) [15], a tool for the automated generation of event logs with
concept drifts, which comes with a wide range of parameters.
We used CDLG to generate 50,000 event logs, allocating 80% for training, 5% for val-
idation, and 15% testing. The generated event logs have the following characteristics:

• The logs are generated from process trees containing between 6 and 20 activities,
as well as sequential, choice, parallel, and loop operators.

• Each event log has between 1,000 and 21,000 traces (with an average of around
7,200 traces per log), and the average trace length varies from 1 to 65 events.

6Project repository: https://gitlab.uni-mannheim.de/processanalytics/cv4cdd.
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Table 2: Characteristics of the two synthetic datasets.

Characteristics CDLG dataset CDRIFT

(Number of) Training Validation Test dataset

Event logs 40 000 2500 7500 115
→ without drifts 9834 586 1834 0
→ with noise 19 908 1250 3768 60

Drifts 112 660 7069 21 229 156
→ Sudden drifts 41 295 2587 7827 156
→ Gradual drifts 41 395 2615 7776 0
→ Incremental drifts 14 967 986 2823 0
→ Recurring drifts 15 003 881 2803 0

Change points 120 151 7501 22 567 156
→ Sudden 59 971 3726 11 333 156
→ Gradual 60 180 3775 11 234 0

• The event logs have 0 to 3 drifts each (with equal probability). Incremental and
recurring drifts consist of 3 simple drifts (of sudden or gradual type), yielding a
maximum of 18 change points per log.

• Each drift introduces changes up to 30% of the process tree elements (activities
and operators) through deletion, insertion, or swapping.

• A quarter of the logs contain randomly inserted noise in 30% of the traces and
another quarter in 60% of the traces. The other half are noise-free.

CDRIFT dataset. To assess the generalizability of our approach and verify that its
performance is not restricted to the characteristics of the CDLG dataset, we also
consider a dataset used in a recent experimental study [3], which we refer to as the
CDRIFT dataset. This set consists of 115 synthetic event logs, previously employed in
evaluating various concept drift detection techniques, stemming from three sources [6,
10, 41]. The logs have about 1700 traces on average and contain between 1 and 4
change points. Notably, the CDRIFT dataset only contains sudden drifts, though.
Baselines. We compare our approach to seven techniques for the detection of change
points that were used in a recent benchmark study by Adams et al. [3]:
1. Bose/J by Bose et al. [6] uses non-overlapping and continuous fixed-size

windowing with activity pair-based feature extraction and statistical testing.
2. Adwin/J by Martjushev et al. [35] improves the Bose/J technique by introduc-

ing adaptive windowing using the ADWIN approach.
3. ProGraphs by Seeliger et al. [48] implements non-overlapping and continuous

adaptive-size windowing, uses graph-based process features alongside Heuristics
Miner, and employs statistical testing.

4. ProDrift by Maaradji et al. [33] employs non-overlapping continuous fixed and
adaptive-size windowing, statistical testing, and an oscillation filter.

5. Rinv by Zheng et al. [60] uses behavioral profiles, a process similarity measure,
and DBSCAN clustering.
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6. EMD by Brockhoff et al. [7] employs a sliding window approach with local multi-
activity feature extraction and the Earth Mover’s Distance.

7. Lcdd by Lin et al. [25] uses both static and adaptive sliding windows, incorpo-
rates directly-follows relations, and ensures local completeness.

Evaluation measures. We report on results obtained using established evaluation
measures for detecting change points [3]. Specifically, for each event log, we compare
the sequences of detected P d =

〈
pd1, . . . , p

d
n

〉
and gold-standard P g = ⟨pg1, . . . , pgm⟩

change points (n,m ≥ 0), where each change point is represented by the ordinal
number of the first trace that started after the change.

To identify which gold-standard change points have been successfully detected, we
use the linear program proposed by Adams et al. [3] to establish a pairwise mapping
between the points in P d and P g. This program finds an optimal mappingM , assigning
as many points to each other as possible, while minimizing the distance between
corresponding change points. Note that no point in P d is assigned to multiple points
in P g or vice versa. Furthermore, M will only include pairs pdi ∼ pgj that are within
an acceptable distance from each other, which we refer to as the allowed latency.
We define latency as a percentage of the total traces in ΣL, i.e., it must hold that
|pdi − pgj | ≤ |ΣL| ∗ latency . We report on results obtained using latency levels of 1%,
2.5%, and 5%.

Due to the consideration of latency, each correspondence in M is regarded as a
true positive. From this, we derive precision (Prc.) as |M |/|P d|, i.e., the fraction of
detected change points that are correct according to the gold standard, recall (Rec.)
as |M |/|P g|, i.e., the fraction of correctly detected gold-standard change points, and
the F1-score as the harmonic mean of precision and recall.
Configurations. For different datasets, we use different configurations for the
baselines and our approach.
Baselines. When reporting on the performance of the baseline techniques, we use the
parameter settings that we found to achieve the highest F1-score. To find these settings
for the CDLG dataset, we applied the experimental framework by Adams et al. [3],
which assesses different parameter configurations, using the validation subset of the
CDLG dataset. For the CDRIFT dataset, we ran experiments using all configurations
that are tested in the Adams et al. [3] framework and report on the results obtained
using the best parameter settings. The exact parameter settings used for the different
techniques per dataset are detailed in our repository.
Our approach. We fine-tuned the RetinaNet model used by our approach with the
training and validation subsets of the CLDG dataset and parameters described in the
second step of our approach. Given such a fine-tuned model, the only parameter to
set for inference is the number of windows N to be used. For the test subset of the
CDLG dataset, we use the same number of windows as used during the fine-tuning
(N = 200). For the CDRIFT dataset, similar to the baseline’s parameters, we report
on the results obtained for the best parameters (N = 70) derived from a sensitivity
analysis (see Section 5.1.3).
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5.1.2 Results

In the following, we present the results obtained for the two datasets, also focusing on
different latency and noise levels.7

Table 3: Overall results for detecting change points.

Dataset Technique
Latency 1% Latency 2.5% Latency 5%

Prc. Rec. F1 Prc. Rec. F1 Prc. Rec. F1

CDLG (test)

Bose/J 0.32 0.39 0.25 0.49 0.60 0.54 0.57 0.70 0.63
Adwin/J 0.43 0.28 0.34 0.58 0.38 0.46 0.63 0.42 0.50
ProGraphs 0.24 0.26 0.25 0.48 0.52 0.50 0.58 0.64 0.61
ProDrift 0.55 0.22 0.32 0.74 0.30 0.43 0.76 0.31 0.44
Rinv 0.36 0.44 0.40 0.46 0.56 0.51 0.53 0.64 0.58
EMD 0.36 0.44 0.39 0.51 0.62 0.56 0.58 0.71 0.64
Lcdd 0.27 0.41 0.32 0.39 0.61 0.48 0.46 0.72 0.56

CV4CDD-4D 0.87 0.75 0.81 0.90 0.77 0.83 0.90 0.77 0.83

CDRIFT

Bose/J 0.08 0.07 0.07 0.60 0.52 0.56 0.75 0.66 0.70
Adwin/J 0.15 0.11 0.13 0.40 0.29 0.34 0.71 0.51 0.59
ProGraphs 0.21 0.18 0.19 0.48 0.41 0.45 0.78 0.67 0.72
ProDrift 0.91 0.32 0.48 1.00 0.35 0.52 1.00 0.35 0.52
Rinv 0.01 0.00 0.00 0.23 0.18 0.20 0.47 0.36 0.41
EMD 0.05 0.03 0.04 0.88 0.59 0.71 0.97 0.66 0.79
Lcdd 0.00 0.01 0.01 0.02 0.04 0.02 0.24 0.64 0.35

CV4CDD-4D 0.61 0.52 0.56 1.00 0.86 0.92 1.00 0.86 0.92

Support: CDLG dataset (test): 22567 change points, CDRIFT dataset: 156 change points.

Accuracy. In the following, we describe the results for each of the two datasets.
CDLG dataset (test). For the test subset of the CDLG dataset, our CV4CDD-4D

approach consistently outperforms the baselines, demonstrating F1-scores ranging
from 0.81 at 1% latency to 0.83 at 2.5% and 5% latencies. It already reaches its peak
performance at just 2.5% latency, surpassing the best baseline, EMD, by 0.27. In terms
of recall, our approach outperforms the baseline scores by 0.30 and 0.15 at 1% and
2.5% latencies, respectively. At 5% latencies, our approach achieves also the highest
recall of 0.77, however, the Lcdd, EMD, and Bose/J techniques achieve comparable
recall scores, each exceeding 0.70. Despite this, they exhibit lower precision, resulting
in significantly lower F1-scores. Finally, in terms of precision, our CV4CDD-4D approach
surpasses the best-performing baseline, ProDrift, by margins of 0.22, 0.16, and 0.14
for 1%, 2.5%, and 5% latency, respectively.
CDRIFT dataset. We obtain overall similar results for the CDRIFT dataset. Our
CV4CDD-4D approach outperforms all baselines across latency levels, achieving F1-
scores of 0.56, 0.92, and 0.92 at 1%, 2.5%, and 5% latencies, respectively. These higher
values can be attributed to the fact that the CDRIFT dataset contains only sudden
drifts, which are relatively easier to detect for our approach. Only at 1% latency does

7Given the non-determinism involved in training deep learning models, we repeated the training and
inference procedure of our approach five times. These repetitions resulted in mean standard deviations of
less than 0.1 percentage points across all measures (for the test subset of the CDLG dataset). We report
on the results of the first run in the remainder.
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ProDrift achieve a higher precision of 0.91 compared to 0.61 for our approach.
The reason for the lower precision of our approach is rather technical. It is mainly
attributed to the annotation of sudden drifts using bounding boxes of 5 windows
spanning around the position of an actual sudden drift in an image. In scenarios with
70 windows and a latency of just 1%, inaccuracies arise during the transformation
from the coordinates of the bounding box to the corresponding window index and
subsequently to the first trace within the window, leading to low precision and recall.
This is supported by the correctly positioned bounding boxes in the respective images,
along with the observation that accuracy sharply increases to its peak values at the
next latency of 2.5%.
Noise impact. To evaluate the robustness to noise of our approach, we report the
results for the event logs with different noise levels in the test subset of the CDLG
dataset. We report results using 5% latency because the accuracy of several baselines
drops significantly for 1% and 2.5% latencies, making it difficult to determine whether
the decrease in performance is caused by noise or latency.

Table 4: Noise impact on detecting change points (5% latency).

Technique
W/o noise With 30% noise With 60% noise

Prc. Rec. F1 Prc. Rec. F1 Prc. Rec. F1

Bose/J 0.59 0.70 0.64 0.57 0.70 0.63 0.55 0.71 0.62
Adwin/J 0.64 0.43 0.51 0.62 0.41 0.50 0.62 0.40 0.49
ProGraphs 0.55 0.64 0.59 0.60 0.66 0.63 0.64 0.61 0.63
ProDrift 0.76 0.60 0.67 0.67 0.002 0.004 0.33 0.004 0.001
Rinv 0.63 0.83 0.72 0.39 0.41 0.40 0.40 0.48 0.44
EMD 0.58 0.72 0.64 0.59 0.70 0.64 0.57 0.70 0.62
Lcdd 0.63 0.76 0.69 0.35 0.77 0.48 0.36 0.60 0.45

CV4CDD-4D 0.89 0.78 0.83 0.89 0.75 0.82 0.89 0.75 0.81

Support: 22567 change points.

As summarized in Table 4, our CV4CDD approach maintains consistent performance
regardless of noise, achieving the highest F1-scores from 0.83 for logs without noise
to 0.82 and 0.81 for logs with 30% and 60% noisy traces, respectively. In noise-free
conditions, three baselines (ProDrift, Lccd, and Rinv) come close to our results.
The Rinv technique shows an outstanding recall of 0.83, while ProDrift maintains
its lead across the baselines in precision. However, all three of these baselines experi-
ence a notable decline in accuracy when noise is introduced, particularly ProDrift.
Conversely, baselines with relatively lower accuracy on the noise-free logs (EMD,
Adwin/J, and ProGraphs) demonstrate less vulnerability to noise. This reveals that
the baselines are subject to a trade-off between performance in noise-free conditions
and robustness to noise, which does not apply to our approach.

5.1.3 Sensitivity Analysis

Finally, we discuss how the number of windows, N , specified by the user affects the
performance of our approach. To investigate this, we conduct a sensitivity analysis that
examines a range of windows and the corresponding evaluation measures for the two
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datasets. Considering the average size of the event logs, we analyze windows between
100 and 300 for the test subset of the CDLG dataset and between 60 and 200 for the
CDRIFT dataset.

Fig. 6: Sensitivity analysis (the test subset of the CDLG dataset).

CDLG dataset (test). Figure 6 shows the effects of different number of windows
on the evaluation measures across the latency levels. All three figures show the same
major trend. Specifically, we observe that the F1-score remains within a corridor of
±5 percentage points for each latency level, with a slight decline in performance at
both extremes of the examined range of windows. This indicates that the approach is
generally robust to the choice of the number of windows when detecting drifts in the
test subset of the CDLG dataset.

Fig. 7: Sensitivity analysis (CDRIFT dataset).

CDRIFT dataset. Figure 7 illustrates the results of our sensitivity analysis, where
we can see two major findings. First, the results suggest that for event logs with
relatively few traces (as in the CDRIFT dataset), it is reasonable to reduce the number
of windows from the default value of 200 to 100 or fewer, allowing each window to
capture more traces and better represent process behavior. Second, a noticeable decline
in recall occurs between 100 and 160 windows, with the lowest performance observed
at 130 windows. This outcome can be attributed to the structure of the synthetic event
logs in the CDRIFT dataset, which typically feature either one change point in the
middle of the log (in the majority of logs) or multiple evenly spaced change points.
At 130 windows, change points fall near the center of a window, causing the distance
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from the start of the window (used for the detection of change points) to exceed the
allowable latency, resulting in reduced performance.

Overall, we can observe in this experiment that our approach achieves a notable per-
formance improvement with respect to latency and shows consistent robustness to
noise when it comes to the detection of change points in event logs.

5.2 Experiment 2: Concept Drift Detection

This section discusses the experiment conducted to evaluate the performance of our
approach to detect drift and their types, also in comparison with the state-of-the-
art technique. In the following, we discuss the evaluation setup, obtained results, and
insights from a sensitivity analysis.

5.2.1 Evaluation Setup

First, we provide information regarding the baseline, data collection, configurations,
and evaluation measures used in this experiment.
Baseline. We compare our approach against the Visual Drift Detection (VDD) tech-
nique proposed by Yeshchenko at el. [58]. We selected this technique because it stands
out as the only existing technique that can be used to detect four types of drifts from an
event log and is the only (partially) comparable solution to our approach, due to a lag
in automation. In our experiments, we use the online version of the VDD technique8.
Data collection. We use the test subset of the CDLG dataset to evaluate the accu-
racy of our approach in detecting concept drift, as no other collections of event logs
encompass the necessary drift scenarios that include a mix of different numbers, types
of drifts, noise levels, and severities of process changes. However, since the VDD tech-
nique is not fully automated and depends on user interpretation of visualizations,
we showcase the advantages of our approach using a specific event log from our test
subset of the CDLG dataset. Specifically, we use log number 5436, which describes a
complex drift scenario with noisy behavior and serves as a proper example to demon-
strate the effectiveness of our approach in detecting complex drifts, particularly in
comparison to the baseline. This log contains 60% noise, 72,433 events, 10,103 traces,
3,787 trace variants, and 9 distinct activities. The left side of Table 7 indicates that
the log includes two complex drifts: incremental and recurring. Both drifts consist of
a sequence of three simple drifts: sudden, gradual, and sudden, leading to a total of 8
change points.
Configurations. For the baseline, we use the suggested default parameters of the
online version of the tool for the selected event log: window size 330, slide size 165, cut
threshold 300. For our CV4CDD-4D approach, we use the default value of 200 windows.
Evaluation measures. We report on precision, recall, and F1-score by comparing a
collection of detected drifts Dd to the gold-standard drifts Dg. For each drift type, t,
and the corresponding detected Dd(t) ⊆ Dd and gold-standard drifts Dg(t) ⊆ Dg,
a true positive (tp) occurs if there is a detected drift ddk ∈ Dd(t) of which both the
start and end change points correspond to those of a gold-standard drift dgl ∈ Dg(t)

8Available online: https://yesanton.github.io/Process-Drift-Visualization-With-Declare/client/build/
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(given a certain latency level). However, if only the start or end point of dgl is detected
correctly, we still count it as 0.5 of a true positive (as well as 0.5 of a false positive).
If neither of the detected change points for a drift corresponds to the gold standard,
it is considered a false positive (fp). Finally, the number of false negative and true
positives (fn+ tp) is given by the number of actual drifts of a given type.

Given these scores, we compute precision (Prc.) as tp/(tp + fp), recall (Rec.) as
tp/(fn+ tp), and the F1-score per drift type (and logs without drifts), as well for the
overall detection (using weights to account for their different support values).

5.2.2 Results

In the following, we present the overall results of our approach with respect to differ-
ent latency and noise levels. Then, we show the advantage of using our approach in
comparison to the baseline.

Table 5: Concept drift detection results by latency levels.

Drift Support
Latency 1% Latency 2.5% Latency 5%

Prc. Rec. F1 Prc. Rec. F1 Prc. Rec. F1

No drifts 1834 0.91 1.00 0.95 0.91 1.00 0.95 0.91 1.00 0.95
Sudden 11333 0.99 0.76 0.86 0.99 0.76 0.86 0.99 0.76 0.86
Gradual 11234 0.99 0.60 0.75 1.00 0.62 0.77 1.00 0.62 0.77
Incremental 2823 0.97 0.92 0.95 0.98 0.97 0.98 0.99 0.98 0.98
Recurring 2803 0.99 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99

Overall 0.98 0.75 0.84 0.99 0.76 0.86 0.99 0.76 0.86

Accuracy. Table 5 presents the results obtained for different latency levels. Our
CV4CDD-4D approach shows F1-scores ranging from 0.84 at 1% latency to 0.86 at 5%
latency. For event logs without any drifts, the approach achieves a perfect recall of
1.00 and a precision of 0.91 across all latency levels. This indicates that it correctly
identifies all event logs without drifts. However, in 1 out of 10 cases, the approach
incorrectly detects a drift in an event log where no drift exists. For sudden and grad-
ual drifts, precision remains high (above 0.99), but recall drops to 0.76 for sudden
drifts and ranges between 0.60 and 0.62 for gradual drifts. This suggests that some
actual sudden and gradual drifts, particularly gradual ones, are not detected as such.
This can be attributed to the fact that our test set includes event logs with varying
noise levels and process changes of different severities, making accurate detection a
challenging task. Lastly, for incremental and recurring drifts, the approach achieves
results above 0.92 for all measures and latency levels, indicating that it accurately
detects the start and end points of these more complex drifts. Compared to simple
drifts, the recall for complex drifts is notably higher. This is due to the more distinct
patterns these drifts produce in an image, which makes them easier for the approach
to detect. In contrast, simple drifts are more likely to be missed, particularly when
the change severity is low or noise is present.
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Table 6: Concept drift detection results by noise levels.

Drift Support
W/o noise With 30% noise With 60% noise

Prc. Rec. F1 Prc. Rec. F1 Prc. Rec. F1

No drifts 1834 0.91 1.00 0.95 0.92 1.00 0.96 0.90 1.00 0.95
Sudden 11333 0.99 0.76 0.86 0.99 0.77 0.86 0.99 0.75 0.85
Gradual 11234 1.00 0.63 0.77 0.99 0.60 0.75 0.99 0.59 0.74
Incremental 2823 0.98 0.95 0.97 0.99 0.97 0.98 0.98 0.95 0.96
Recurring 2803 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.98 0.99

Overall 0.99 0.77 0.86 0.99 0.76 0.85 0.98 0.75 0.84

Noise impact. Table 6 shows the results for different noise levels. Overall, the results
remain consistent across all noise levels, demonstrating that our approach is robust to
noise. The only notable variation is a slight decrease in recall for gradual drifts, from
0.63 for noise-free event logs to 0.59 for logs with 60% of noise. This suggests that the
relatively low recall observed in Table 5 is primarily due to the complexity of the drift
scenario rather than the influence of noise.
Comparison with the baseline. Figure 8 presents the results of our approach
compared to the baseline for the selected event log.
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(a) Results of our CV4CDD-4D approach.
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(b) Results of the VDD technique.

Fig. 8: Drift detection results for the selected log.

Our approach. Figure 8a illustrates the results of our CV4CDD-4D approach, highlight-
ing the detected drifts and their corresponding confidence levels, which indicate the
probability of the detected drift belonging to a specific drift type. Table 7 shows the
corresponding summary of all detected drifts, including their type and respective start
and end points. Based on the actual drifts and the deviations between detected and
actual change points, our approach successfully identifies all drifts in this event log
for a 1% latency, which allows deviations of at most 101 traces, given the log size
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of 10,103 traces. The average deviation across all change points is approximately 23
traces, which is consistent with the expected deviation9.

Table 7: Actual drifts vs. detected drifts using our approach.

Actual drifts Detected drifts Deviation

Type Start End Type Start End Start End

Incremental 1387 4668 (+) Incremental (+) 1351 (+) 4651 −36 −17
→ Sudden 1387 1387 (+) → Sudden (+) 1351 (+) 1351 −36 −36
→ Gradual 2986 3463 (+) → Gradual (+) 2951 (+) 3401 −35 −62
→ Sudden 4668 4668 (+) → Sudden (+) 4651 (+) 4651 −17 −17
Recurring 5835 9001 (+) Recurring (+) 5801 (+) 9001 −34 0
→ Sudden 5835 5835 (+) → Sudden (+) 5801 (+) 5801 −34 −34
→ Gradual 6947 7321 (+) → Gradual (+) 6951 (+) 7301 4 −20
→ Sudden 9001 9001 (+) → Sudden (+) 9001 (+) 9001 0 0

“(+)” indicates that the detected information correspond to the actual, given 1% latency.

VDD technique. Figure 8b presents the primary outcome of the baseline technique:
the Drift Map. This map displays over 900 detected behavioral rules (on the y-axis),
organized into 61 behavioral clusters, which are indicated by horizontal dashed white
lines. The Drift Map highlights four sudden drifts indicated by vertical dashed black
lines. While the first and the last drifts are correctly identified, the two other sudden
drifts actually mark two change points that denote the start and end moments of
a gradual drift. This gradual drift can only be identified through visual inspection
of the gradual change in the confidence level in certain behavior clusters. Using the
Drift Map, users can also observe that several clusters exhibit recurring behavior in
the second part of the log, suggesting that detected drifts belong to a recurring drift.
However, analyzing the first part of the log, which contains incremental drifts, proves
to be more challenging. Although the Drift Map detects several changes across different
behavioral clusters (indicated by a white dashed line within clusters), it becomes nearly
impossible to conclude that these changes are part of the same incremental drift.

5.2.3 Sensitivity Analysis

Similar to the first experiment, we conclude this experiment by presenting the insights
gained from the sensitivity analysis conducted on the test subset of the CDLG dataset.
We consider again different number of windows between 100 and 300 and illustrate
the impact of the number of windows on drift detection accuracy across three latency
levels.

Figure 9 illustrates how varying the number of windows influences evaluation mea-
sures across different latency levels. Similar to the sensitivity results from Experiment 1
(for the test subset of the CDLG dataset), we again observe a slight decline in per-
formance at both extremes of the examined number of windows. However, regardless

9For a log with 10,103 traces divided into 200 windows, each window contains approximately 50 traces.
In cases of accurate drift detection, the expected error between the actual trace index and the first trace
in the window is half the window size, i.e., 25 traces.
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Fig. 9: Sensitivity analysis.

of latency, the evaluation measures remain within a corridor of ±5 percentage points,
indicating that drift detection is also robust to the choice of the number of windows.

In summary, the evaluation results of this experiment suggest that our approach
detects various types of drifts with high precision and acceptable recall across differ-
ent latencies, while remaining robust to noise and choice of the number of windows.
Compared to the state-of-the-art techniques, our approach represents a notable
advancement towards the automated and thorough detection of concept drifts.

5.3 Experiment 3: Evaluation on Real-Life Event Logs

In this experiment, we report results obtained using our approach on real-life event
logs and compare them with findings obtained in a comparable study. In the following,
we discuss the evaluation setup and obtained results.

5.3.1 Evaluation Setup

We provide a summary of the characteristics of the real-life event logs and detail the
configurations used in our approach.
Data collection. To allow a direct comparison of insights, we selected the same three
real-life event logs used in the study by Yeshchenko et al. [58], where the authors
employed their VDD technique to detect four types of drifts. The characteristics of
the selected event logs are summarized in Table 8. These logs exhibit diverse charac-
teristics in terms of the number of traces, trace variants (unique sequence of executed
activities), number of events, and distinct activities.

Table 8: Characteristics of the real-life event logs.

Log name #Traces #Trace variants #Events #Unique activities

Hospital Log 1,143 981 150,291 624
Help desk Log 4,580 226 21,348 14
Sepsis Log 1,050 846 15,214 16

Configuration. To accommodate the relatively low number of traces in the selected
real-life event logs, we applied our approach using an adjusted number of windows.
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Specifically, we report results using 75 windows for the Hospital and Sepsis logs (which
contain around 1,000 traces) and 100 windows for the Helpdesk event log (which has
approximately 4,500 traces).

5.3.2 Results

Figure 10 presents the results obtained by our approach for the real-life event logs,
which we compare with the findings reported using the VDD technique [58].
Hospital Log. For the Hospital event log, our method identifies a single sudden drift
around June 12, 2006. This detection partially aligns with the second sudden drift
reported by the VDD technique (around July 07, 2006) [58]. However, the Drift Map
identified an additional sudden drift in November 2005, which our approach does not
capture. Lastly, neither our approach nor the VDD tool detected any complex drifts
within the log.

a) Hospital log b) Help desk log c) Sepsis log
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Fig. 10: Detected drifts by our CV4CDD-4D approach.

Help Desk Log. In the case of the Help desk event log, our approach identifies an
incremental drift that begins on September 5, 2012, and concludes on July 10, 2013.
Within this period, we also detect a gradual drift between June 8, 2011, and August
9, 2013, as part of the incremental drift process. The start points of these two drifts
correspond to the sudden drifts detected by the VDD technique. However, according
to our findings, these drifts represent change points within the detected incremental
drift. For certain behavioral clusters, the VDD technique also detects gradual and
incremental drifts, which are temporally aligned with the two drifts identified by our
approach. Additionally, the VDD tool detects several sudden drifts in some clusters,
though, as noted by the authors, these are considered outliers rather than true drifts.
Our image-based representation of the event logs depicts these outliers, though our
approach does not classify them as drifts.
Sepsis Log. Our approach does not detect any notable drifts in the Sepsis event
log. As shown in Figure 10, the process behavior remains relatively homogeneous
throughout the entire recorded period. Similarly, the VDD technique does not show
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any patterns of change over time, indicating that the major clusters of behavior do not
exhibit significant drifts [58]. However, the authors identify some recurring patterns
in a few minor clusters, which are associated with two specific activities. While these
patterns may indeed suggest recurring drifts, they could also be attributed to the
specific cases within these minor clusters, as they represent only a small portion of
the overall behavior.

Overall, this experiment demonstrates that our CV4CDD-4D approach can be effectively
applied to real-life event logs, providing insights that align with and also extend the
findings of the state-of-the-art technique. However, our approach automatically iden-
tifies when drifts occur and what their types are without the need of any additional
interpretation of different visualizations.

6 Conclusion

In this paper, we proposed CV4CDD-4D, a concept drift detection approach that can
detect sudden, gradual, incremental, and recurring drifts in an automated manner
from event logs (offline setting). It is based on a novel idea to detect drifts in an event
log using an object detection model (RetinaNet) fine-tuned with a large collection of
event logs that contain known concept drifts. In the conducted experiments, we demon-
strated that CV4CDD-4D considerably outperforms available baselines for detecting
change points in event logs across several datasets, including well-established datasets
commonly used to evaluate concept drift detection techniques. We also demonstrated
the accuracy in detecting all four types of drifts and the robustness to noise of our
approach to noise. Additionally, we highlighted its advantages in performing qualita-
tive analysis on various real-world event logs compared to the state of the art. Finally,
it is worth noting that CV4CDD-4D stands out not only as the first approach using
techniques from computer vision for concept drift detection in process mining, but as
the first approach using supervised machine learning in general.

In future work, we aim to address the limitations of our approach and enhance its
capabilities. We plan to refine the annotation of sudden drifts, as the current bounding
box of 5 windows may be too large for small event logs. Additionally, our goal is to
develop an algorithm to determine the optimal number of windows based on event
log characteristics, removing the need for user selection. We also intend to train our
model using diverse data sources, moving beyond our current reliance on a single tool
for generating event logs with known concept drifts. We plan to enhance our model
by training it with diverse data sources and various parameter options for similarity
measures and behavioral representations, thereby improving its sensitivity to drift
patterns. We will enhance our capabilities in concept drift detection to encompass
multiple process perspectives, including time, resources, and data. Additionally, we
target including drift localization to gain insights into the changes that occur after
each drift. Finally, we aim to extend further the evaluation of our approach using real-
life event logs, particularly focusing on datasets with known concept drifts as they
become available.
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[9] Carmona, J., Gavaldà, R.: Online techniques for dealing with concept drift in
process mining. In: Advances in Intelligent Data Analysis XI: IDA 2012. pp.
90–102. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
34156-4 10

[10] Ceravolo, P., Tavares, G.M., Junior, S.B., Damiani, E.: Evaluation
goals for online process mining: A concept drift perspective. IEEE
Transactions on Services Computing (TSC) 15(4), 2473–2489 (2022).
https://doi.org/10.1109/TSC.2020.3004532

[11] Ciccio, C.D., Mecella, M.: On the discovery of declarative control flows for artful
processes. ACM Transactions on Management Information Systems 5(4), 1–37
(2015). https://doi.org/10.1145/2629447

[12] van Der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing
between flexibility and support. Computer Science Research and Development:
CSRD 2009 23, 99–113 (2009). https://doi.org/10.1007/s00450-009-0057-9

[13] Elkhawaga, G., Abuelkheir, M., Barakat, S.I., Riad, A.M., Reichert, M.: CONDA-
PM: a systematic review and framework for concept drift analysis in process
mining. Algorithms 13(7), 161 (2020). https://doi.org/10.3390/a13070161

[14] Gallego-Fontenla, V., Vidal, J.C., Lama, M.: A conformance checking-
based approach for sudden drift detection in business processes.
IEEE Transactions on Services Computing 16(1), 13–26 (2021).
https://doi.org/10.1109/TSC.2021.3120031

[15] Grimm, J., Kraus, A., van der Aa, H.: CDLG: A tool for the generation of
event logs with concept drifts. In: International Conference on Business Process
Management: BPM 2022 (Demos). vol. 3216, pp. 92–96. CEUR-WS (2022)

[16] Guan, W., Cao, J., Gu, Y., Qian, S.: AIMED: An automatic and incremen-
tal approach for business process model repair under concept drift. Information
Systems 119, 102285 (2023). https://doi.org/10.1016/j.is.2023.102285

[17] Hanga, K.M., Kovalchuk, Y., Gaber, M.M.: PgraphD*: Methods for drift detec-
tion and localisation using deep learning modelling of business processes. Entropy
24(7) (2022). https://doi.org/10.3390/e24070910

[18] Hassani, M.: Concept drift detection of event streams using an adaptive window.
In: 33rd International ECMS Conference on Modelling and Simulation: ECMS
2019. pp. 230–239 (Jun 2019). https://doi.org/10.7148/2019-0230

26



[19] Hompes, B., Buijs, J.C., van der Aalst, W., Dixit, P.M., Buurman, J.: Detecting
changes in process behavior using comparative case clustering. In: Data-Driven
Process Discovery and Analysis: SIMPDA 2015. pp. 54–75. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-53435-0 3

[20] Huete, J., Qahtan, A.A., Hassani, M.: PrefixCDD: Effective online concept drift
detection over event streams using prefix trees. In: 2023 IEEE 47th Annual Com-
puters, Software, and Applications Conference (COMPSAC). pp. 328–333 (2023).
https://doi.org/10.1109/COMPSAC57700.2023.00051

[21] Impedovo, A., Mignone, P., Loglisci, C., Ceci, M.: Simultaneous process drift
detection and characterization with pattern-based change detectors. In: 23rd
International Conference on Discovery Science: DS 2020, Thessaloniki, Greece,
October 19–21, 2020, Proceedings 23. pp. 451–467. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-61527-7 30

[22] Klijn, E.L., Mannhardt, F., Fahland, D.: Multi-perspective concept drift
detection: Including the actor perspective. In: Advanced Information Sys-
tems Engineering: CAiSE 2024. pp. 141–157. Springer, Cham (2024).
https://doi.org/10.1007/978-3-031-61057-8 9

[23] Kraus, A., van der Aa, H.: Looking for change: A computer vision approach
for concept drift detection in process mining. In: International Conference
on Business Process Management. pp. 273–290. Springer, Cham (2024).
https://doi.org/10.1007/978-3-031-70396-6 16

[24] Lakshmanan, G.T., Keyser, P.T., Duan, S.: Detecting changes in a semi-
structured business process through spectral graph analysis. In: IEEE 27th
International Conference on Data Engineering Workshops. pp. 255–260 (2011).
https://doi.org/10.1109/ICDEW.2011.5767640

[25] Lin, L., Wen, L., Lin, L., Pei, J., Yang, H.: LCDD: detecting business process
drifts based on local completeness. IEEE Transactions on Services Computing
(TSC) 15(4), 2086–2099 (2020). https://doi.org/10.1109/TSC.2020.3032787

[26] Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 2980–2988 (2017)

[27] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: Common objects in context. In: Computer Vision:
ECCV 2014. pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-10602-1 48

[28] Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M.:
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